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Abstract

Service-oriented computing has brought special attention to service modeling,
especially in connection with semantic technologies. The expected proliferation
of publicly accessible services (both WS–∗ services based on WSDL and SOAP,
and RESTful services — including Web APIs — based on native Web technolo-
gies) will necessitate tool support and automation. The research on Semantic
Web Service (SWS) addresses this expected need with semantic technologies,
creating SWS frameworks that especially address service discovery, composition
and execution.

As the first SWS standard, expressing a consensus of the SWS research
community, in 2007 the World Wide Web Consortium produced a lightweight
bottom-up specification called SAWSDL for adding semantic annotations to
WSDL service descriptions. SAWSDL intentionally only defines an annotation
mechanism, but does not specify any semantic model for those annotations. As
such, it is intended as a point of convergence for SWS research and development.

The development of SAWSDL created an empty space in need of filling by
semantic models suitable for use as annotations in WSDL descriptions. To fill
this space, this thesis defines WSMO-Lite, an ontology for service semantics
that fits directly into SAWSDL annotations, covering functional, nonfunctional,
behavioral and information semantics of Web services, which together form a
basis for semantic automation.

SAWSDL is, by design, specific to WSDL, a standardized Web service de-
scription technology. However, for a number of reasons, WSDL is not used
to describe RESTful services, and the increasingly common RESTful services
were overlooked by SWS research. There was a need for a description language
aimed at RESTful services that would be lightweight and easily combine with
existing practice. To tackle this need, this thesis proposes two microformats,
hRESTS and MicroWSMO, which mirror WSDL and SAWSDL on top of
human-oriented HTML documentation of RESTful services.

Further, this thesis defines a minimal semantic service model that is an
abstraction of WSDL and hRESTS, with which RESTful services can seamlessly
be included in semantic processing with WSMO-Lite.

To demonstrate the viability of WSMO-Lite, in this thesis we have adapted
several SWS automation algorithms to this semantic model, namely algo-
rithms for Web service discovery, ranking and composition.

WSMO-Lite is intentionally lightweight, in order to smoothen the learning
curve for adopters of SWS technologies. Our work is intended to serve as a
basis for consolidation of SWS technologies and as an easy way of extending
service-oriented and RESTful systems with semantic automation.

WSMO-Lite was submitted to the W3C for consideration towards standard-
ization, and acknowledged as a Member Submission [27]. The W3C Team Com-
ment on the submission stated that it “is a useful addition to SAWSDL for
annotations of existing services and the combination of both techniques can
certainly be applied to a large number of semantic Web services use cases.”
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Chapter 1

Introduction

The emergence of service-oriented computing has brought special attention to
the area of service modeling. Formal service descriptions are a fundamental
element that enables tool support and automation for such tasks as service
discovery, composition, execution and mediation. A 2001 vision article about
the integration of services and ontologies [38] focuses on how the presence of
service descriptions can enable computers to “find possible ways to meet user
needs and offer the user choices for their achievement.” Various proponents of
concrete frameworks share an even stronger vision, where “the program can
discover web services and invoke them fully automated” [26], for example to
make complete travel arrangements for the user, going as far as filling out the
user’s expense claim [77]. [26] goes on to claim that “without mechanization of
these processes, Internet-based e-commerce will not be able to provide its full
potential in economic extensions of trading relationships.”

In the decade since those articles, research into semantic Web service (SWS)
models and descriptions has received much attention and funding: the ma-
jor research efforts include the US-based OWL-S initiative,1 and the Euro-
pean projects DIP, SUPER and SOA4All.2 In these and other projects, re-
searchers have proposed numerous frameworks for semantic Web services, espe-
cially OWL-S [83], WSMO [105] and WSDL-S [1].

SWS research has been highly fragmented, usually top-down, semantics-
first, and by design detached from the underlying Web service technologies.
Sometimes, semantic automation algorithms are even developed outside formal
SWS frameworks (examples will be given later in this thesis). This situation has
arguably hurt industrial adoption of SWS technologies, which, to our knowledge,
has been minimal — to illustrate, searching for WSMO and OWL-S service
descriptions, we have only found research examples and artificial test collections.

Service-oriented computing, centered on the so-called “WS–∗” family of
technologies (based on the lightweight XML message protocol SOAP and the
service description language WSDL), is heavily driven by standardization. Until
2007, there were no standards for semantic descriptions of Web services, then
the World Wide Web Consortium (W3C) produced its Recommendation called
SAWSDL: Semantic Annotations for WSDL and XML Schema [107]. SAWSDL
represented the consensus of the SWS research community, but it is not a fully-

1http://www.daml.org/services/owl-s/
2http://dip.semanticweb.org/, http://ip-super.org/, http://www.soa4all.eu/
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4 Chapter 1. Introduction

fledged SWS framework; instead it only provides hooks in WSDL where seman-
tic annotations can be attached, leaving the specification and standardization
of concrete service semantics for later.

In parallel to the development of WS–∗ technologies, another approach to
service-oriented computing has started gaining traction. Built around Web ap-
plications, using the core Web protocols and formats, and following the Web
architectural style REST [30], the approach is often called RESTful Web ser-
vices [101] or Web APIs. Such services have naturally occurred in Web ap-
plications, as the application functionalities are increasingly used by program-
matic clients, such as other Web applications. RESTful services are especially
present in Web applications that use rich user interfaces (cf. Ajax [32]), where
the JavaScript code running in the browser is a programmatic client, for which
the Web application must provide appropriate services.

RESTful Web services use native Web technologies around HTTP, XML and
JSON, resulting in better integration with the Web. However, RESTful services
have been largely ignored by Semantic Web Services research, likely because
there is no widely-accepted format for machine-oriented (formal) descriptions
of RESTful services that could form the basis for semantic descriptions; and in
fact there has been considerable discussion on whether RESTful services, with
their hypertext structure, even need further formal service descriptions.3

An important difference between RESTful and WS–∗ services is in their
client-facing structure: where a WS–∗ service usually exposes a single network
protocol endpoint that handles all the operations of the service, a non-trivial
RESTful service exposes a number of independently meaningful and accessible
resources. In our work, we reconcile the two different kinds of services and we
show that most semantic automation tasks can disregard the difference. In this
thesis, we generally use the unqualified term “Web service” to encompass both
WS–∗ services and RESTful services.

In summary, this thesis presents work that has been motivated by the
emergence of SAWSDL, a standard that aims to directly address the frag-
mentation of SWS research, and further motivated by the lack of SWS support
for RESTful services; the goal of this work is to provide a SAWSDL-based
unifying ontology for lightweight semantic descriptions of WS–∗ and
RESTful Web services, which will support automation of Web service tasks
such as discovery, selection, and composition. This lightweight unifying ontology
has been called WSMO-Lite.

In this first chapter of this thesis, we define and motivate more concretely
the research problems addressed in our work (in Section 1.1), we describe our
approach to tackling the problems (in Section 1.2), and we summarize the con-
tributions of our work (in Section 1.3). Finally, we give an overview of the
structure of the thesis (in Section 1.4).

1.1 Problem Statement

Semantic Web Services is a research area that applies semantic technologies
towards automation of the discovery and use of Web services. The key to au-
tomation is a machine-readable representation of information about the func-

3http://lists.w3.org/Archives/Public/public-web-http-desc/2005Jun/0000.html is
an example mailing list posting that started a long thread with such discussions.

http://lists.w3.org/Archives/Public/public-web-http-desc/2005Jun/0000.html
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tionality and other aspects of known services — a set of semantic Web service
descriptions. A system that implements service automation will process the
formal descriptions to perform or to support tasks such as discovery, ranking,
composition, invocation etc.

SWS research primarily focuses on how to automate (wholly or partially)
the various tasks. Every proposed approach must specify the information that
it needs to know about the existing services, which serves as the input to the ap-
proach. SWS frameworks specify languages and ontologies for formal description
of Web services, with ties to underlying technologies for Web service description
and communication. Note that proposed automation approaches are not always
related to any particular SWS framework. For example, [42] is a composition
approach (discussed in Chapter 7 of this thesis) that employs a purely logical
(mathematical) formalization of services; to use this approach with actual Web
services, it must be adapted to some concrete SWS framework.

We can identify two high-level requirements on SWS frameworks: a SWS
framework must i) capture information about service semantics which supports
service automation tasks, ii) attach to relevant Web services technologies. The
first requirement is discussed more in Chapter 2, where we provide a detailed
survey of relevant literature in SWS research, from which we derive the types of
information that need to be expressed in service descriptions to support service
automation. The second requirement is discussed in further detail here because
it motivates and frames the focus of this thesis.

Several SWS frameworks have been proposed in literature, chief among
them (by the body of published work that pertains to them) are OWL-S [83]
and WSMO [105]. For representing the service models and domain ontologies,
OWL-S uses the Web ontology language OWL, and WSMO uses a family of lan-
guages called WSML.4 In both frameworks, the semantic description of a service
is conceptually independent of the underlying technical description (e.g. WSDL),
and there is a grounding mechanism to connect the semantic description with an
underlying technical description to support invocation. In contrast, WSDL-S [1]
was another SWS framework which focused on attaching semantics directly to
WSDL descriptions, independent of ontology representation languages.

In 2005, the W3C held a workshop to judge the various SWS technolo-
gies as inputs to potential standardization. The workshop report [9] indicated
an apparent “consensus that better connections are needed with the realm of
work based on the existing WS stack”; proposing an activity “to define simple
specifications for the low-hanging fruit”, which “would likely include seman-
tic annotations in Web services descriptions” with “a simple incremental set of
extensions to WSDL.” Ultimately, the outcome of the workshop was the forma-
tion of a working group on Semantic Annotations for WSDL, which produced
SAWSDL [107], a thin layer of annotations for WSDL and XML Schema docu-
ments: one generic annotation attribute modelReference that simply points from
a WSDL or schema element to a semantic concept of any kind, and two specific
attributes, liftingSchemaMapping and loweringSchemaMapping, used for pointing
to data mappings.5

The work on SAWSDL intentionally avoided defining actual types of seman-
tics that would be pointed to by model references. Annotating the inputs and

4WSML provides a formal mapping to RDF and OWL, with some extensions.
5SAWSDL layers semantics on top of syntax, hence lifting and lowering.
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outputs of web service operations in SAWSDL is straightforward, but express-
ing other types of semantics is left unspecified. Therefore, SAWSDL cannot
be viewed as a SWS framework itself; instead it is intended as a base on which
further work should be done, eventually consolidating SWS approaches for stan-
dardization. This opened a research question:

1. What kinds of semantics should be pointed to by SAWSDL model references
to support SWS automation, and how should they be represented?

To scope our work, we must specify the desired degree of SWS automation
that we intend to support. The main area where SWS automation can be benefi-
cial is in helping human users deal with large numbers of services — finding and
selecting appropriate services and composing them together in valid processes.
Therefore, we have chosen discovery, selection and composition as the primary
scope of our work. In Section 2.1, we discuss these and other SWS automation
tasks that are commonly targeted by SWS frameworks.

In parallel to the above developments, RESTful services started gaining
prominence, but they were ignored by most SWS researchers. The primary bar-
rier to applying SWS technologies to RESTful services is that despite the ex-
istence of several proposal for formal descriptions of RESTful services (mainly
WADL [36]), providers seem reluctant to use them; instead most RESTful ser-
vices are only described using plain, unstructured HTML documentation use-
ful only to a human developer [72]. WSMO and OWL-S could, in theory, be
grounded in RESTful services (e.g. in their WADL descriptions), but we are not
aware of anybody actually researching such groundings. WSDL, the base for
existing groundings and for WSDL-S and SAWSDL, can in theory be used to
describe RESTful services, but very few RESTful services have WSDL descrip-
tions [72].

The emergence of RESTful services, along with the lack of formal and seman-
tic descriptions of such services, leads to a supplemental research question:

2. Can SAWSDL and the ontology for service semantics be applied to REST-
ful services despite the architectural differences between WS–∗ and REST?

There is no doubt in general that semantic descriptions of some form can
support automation of the use of RESTful services; the question above focuses
on the particular suitability of the SWS standard SAWSDL, and of the ontology
with which we answer the first question, for describing RESTful services as SWS.
If we can answer this question positively, we will have a single framework that
can support SWS automation for WS–∗ and RESTful services alike.

These two research questions focus our work. They leave several common
SWS concerns out of scope of this thesis:

• Creation of semantic annotations: we do not tackle the problem of knowl-
edge acquisition; in particular, we do not work on tools and methodologies
that would support the process of describing services semantically. For the
workings of the algorithms presented in this thesis, we assume service de-
scriptions are already available.

• Invocation: we do not deal in depth with the complexities of mapping
between a semantic client and the Web services it wants to invoke — the
creation of on-the-wire messages, and handling of errors and faults.



Section 1.2. Approach and Methodology 7

• Goal modeling: in contrast to WSMO, we do not propose a common form
for expressing client goals — no common form is required to formalize
or implement automation algorithms that work with semantic service de-
scriptions. Indeed, different automation algorithms require different de-
scriptions of what the user wants: for example, algorithms for discovery
and composition need to know what the user wants to achieve, expressed
through a description of the desired capability or the desired effect that
the service(s) should have, while algorithms for service ranking and se-
lection need the user to specify how it should be done, including such
nonfunctional preferences such as that the functionality be done cheaply,
fast and reliably, captured for example as weights for various service pa-
rameters. Some automation algorithms can further use a description of the
input data that the client can make available to the service(s), which may
affect the suitability or performance of services. The structure of client
goals specific to various algorithms is discussed primarily in Chapter 7.

• Mediation: practical deployments of semantic technologies often have a
need for mediating between different domain ontologies with overlapping
semantics; similarly, service integration often requires mediation of pro-
cesses. In our work, mediation is assumed to be handled by the infrastruc-
ture.

1.2 Approach and Methodology

From the two research questions posed in the preceding section stem four high-
level methodological steps for our research work:

First, we analyze the types of semantics necessary to support SWS automa-
tion, by studying relevant literature especially on automation algorithms and
on SWS frameworks, and by performing conceptual analysis of our own. Based
on our analysis, we propose an ontology (a codification of formal definitions) for
expressing the semantics on top of SAWSDL and WSDL.

Second, we analyze the structure of RESTful services, with the aim on ap-
plying the SWS semantics. From another round of literature examination and
our own conceptual analysis, it turns out that we can devise a common model
that distills service descriptions for WS–∗ and RESTful services; this model can
be annotated with SAWSDL and the semantics from the first step.

These first two steps result in an ontology that has a service model and
concepts for service semantics; we call this ontology WSMO-Lite.

Third, to evaluate the viability (fitness for purpose) of the ontology, we adapt
several SWS automation algorithms to WSMO-Lite. The algorithms include
our offer discovery, developed in parallel with the main contributions of this
thesis. In this evaluation step, we check our main success criteria: i) that
our service semantics ontology is sufficiently expressive to support the desired
degree of automation (comprising service discovery, selection and composition),
and ii) that the automation works equally well with RESTful services as it does
with WS–∗ services.

Fourth and final, we perform further qualitative and quantitative evaluation
of our contributions. We describe several prototypical implementations that
make use of WSMO-Lite, and to illustrate that our approach is comparable
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to the state of the art, we evaluate the performance of the adapted discovery
mechanisms against other known service matchmaking tools. We also compare
WSMO-Lite to state-of-the-art SWS frameworks, to verify the appropriate po-
sitioning of our approach in the evolving SWS field.

While carrying out the above methodological steps, we have further adopted
the following interrelated design principles, originating from discussions with
service practitioners and SWS researchers, and aimed to increase WSMO-Lite’s
chances of adoption:

Proximity to underlying standards. To a certain extent, WSMO-Lite is a
continuation of the WSDL-S line of work, and a rethinking of WSMO
and OWL-S, with SAWSDL in the center of its focus. Where WSMO and
OWL-S make the semantic description of a service conceptually indepen-
dent of the underlying technical description (e.g. WSDL)6, the approach of
WSDL-S, continued in our work, splits the semantic service models into
their constituent semantic pieces, and uses those directly in SAWSDL.
This way, the semantic description stays close to the underlying WSDL
and thus could be easier to publish and maintain.

Light weight. In the spirit of SAWSDL, WSMO-Lite is very lightweight: a) it
defines a minimal vocabulary for service semantics, b) the vocabulary is
defined in the most basic Semantic Web ontology language, RDFS, with
very limited reasoning requirements,7 but it can easily accommodate more
expressive languages, especially including languages for logical expressions
and rules; c) WSMO-Lite builds on WSDL, which is already well-known
to Web services practitioners; d) in the mechanism for describing REST-
ful services, the choice of microformats (or alternatively RDFa) limits the
need for new syntax, and e) the two microformats proposed in this the-
sis are also tightly scoped to fit already existing service documentation.
In effect, WSMO-Lite adds very few new constructs on top of underly-
ing technologies that are already well-known, and it carries no inherent
requirements on reasoning power.

Modularity. WSMO-Lite distinguishes four types of service semantics that
together support automation of all the major service consumer’s tasks:
discovery, composition, negotiation, ranking, invocation etc. WSMO-Lite
annotations are modular: in any given service-oriented system, increasing
needs for automation can be met incrementally by adding and refining
various types of semantic annotations. For example, when the number of
services becomes hard to manage, functional annotations can be added
to support service discovery and composition; when many services are
being composed together, information model annotations can be added
to facilitate data mediation; and later nonfunctional properties can be
added so that the system can adaptively respond to service failures with
replacements that have similar nonfunctional parameters (quality of ser-
vice, policy, price) as the service that failed.

6Both WSMO and OWL-S use a “grounding” mechanism to connect a cohesive semantic
model to service technologies, and both have groundings that use SAWSDL ([62, 75]).

7We discuss the difference between lightweight and heavyweight ontologies in Section 3.5.3.
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Figure 1.1: Semantic Web service descriptions with WSMO-Lite

1.3 Main Contributions

Figure 1.1 shows the core technologies that are among the contributions of this
thesis. Our work stems from the standardization of SAWSDL, which, as illus-
trated on the left-hand side of the figure, extends the WS–∗ service description
language WSDL with semantic annotations. For the content of the annotations,
we propose the WSMO-Lite ontology of service semantics, capturing the
types of semantics that are necessary to support SWS automation.

The right-hand side of the figure shows our proposed technologies for describ-
ing and semantically annotating RESTful services: hRESTS and MicroWSMO.
WSMO-Lite includes a unified minimal service model that extracts the concepts
common in WS–∗ and RESTful Web services. Based on this model, hRESTS
(HTML for RESTful Services) is a microformat8 for structuring common HTML
documentation of RESTful APIs to make it machine-processable, analogously
to how WSDL provides machine-processable descriptions on the WS–∗ side.9

MicroWSMO (Microformat for WSMO-Lite) is an extension of hRESTS that
adds SAWSDL annotation properties, where WSMO-Lite semantics can be at-
tached.

We can summarize the contributions of this thesis in the following list:

1. An ontology that enables expressing clearly-delineated types of service
semantics over SAWSDL (the first half of WSMO-Lite).

2. A minimal service model that extracts key service description and seman-
tic annotation concepts for processing in semantic tools (the second half
of WSMO-Lite).

3. An analysis of the mapping from the structure of RESTful services into
the operation-oriented service model above.

4. Two microformats (hRESTS and MicroWSMO) for marking up machine-
oriented service descriptions as part of HTML documentation of RESTful
services.

8Microformats are an approach for annotating mainly human-oriented Web pages so that
key information is machine-readable. [58]

9There is no accepted equivalent of WSDL for RESTful services; the Web Application
Description Language (WADL, [36]) is a RESTful (resource-oriented) alternative to WSDL,
but it is not commonly accepted.
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5. The adaptations of several SWS automation algorithms for WSMO-Lite,
covering discovery, offer discovery, ranking and composition.

WSMO-Lite, together with its supporting technologies hRESTS and Mi-
croWSMO, is a key piece of a larger body of work by researchers in several
collaborative projects, chiefly in SOA4All [66]. This thesis consolidates and
expands those parts of the aforementioned efforts that were principally devel-
oped by the author of this thesis.

1.4 Overview of this thesis

This thesis is organized in three parts:

I. Problem Statement and Background, which analyzes the problem
attacked by this work (Chapter 2), and describes all the background tech-
nologies necessary for understanding of this thesis (Chapter 3);

II. Semantic Web Service Description Languages, which contains the
main contribution of this work, i.e., the semantic models (Chapter 4) and
the languages (Chapters 5 and 6) for lightweight semantic description of
Web services;

III. Evaluation and Conclusions, which shows the algorithms and proto-
types with which lightweight semantic Web service description can be used
to achieve concrete automation tasks (Chapters 7 and 8), describes our
evaluation of the lightweight semantic description languages presented in
this thesis (Chapter 9), and adds concluding remarks, including on future
work (Chapter 10).

Figure 1.2 shows the chapters of this thesis as they fit within the three parts,
including the dependencies between them.
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2. SWS3. Background

5. 6. 7. AlgorithmsLanguages

1. Introduction

8. Implementations

9. Evaluation

10. Conclusions

4. ModelsPart II

Part I

Part III

Figure 1.2: Thesis structure, with dependencies between chapters
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Chapter 2

Semantic Web Services

In this chapter, we survey existing literature on Semantic Web Services, to
provide a concrete description of the research problem addressed by this thesis,
which is, in short, automation of the usage of Web services through lightweight
semantic service descriptions.

SWS research has two main threads: algorithms that automate various tasks
in using Web services, and frameworks that provide models for service descrip-
tions intended as the inputs to the automation algorithms. This chapter ana-
lyzes literature in algorithms in Section 2.1 and in frameworks in Section 2.2.
Section 2.3 discusses the open problems.

2.1 SWS Automation Tasks and Algorithms

The service consumer’s tasks are identified in the Reference Architecture for
Semantic Execution Environments (SEE-RA, [56]). Concretely, the SEE-RA
defines a semantic broker between the service consumer and the services them-
selves; as such a broker can equally be deployed privately by service consumers,
we talk about tasks of the consumer (or client), automated to some degree with
semantic technologies.

In order to achieve any automation, the computer needs to have machine-
readable and understandable information about the available services — Web
service descriptions. These descriptions capture the relevant aspects of the
meaning of service operations and messages. WS descriptions are processed by
a semantic execution environment (SEE, for instance WSMX [37]). A user can
submit a concrete goal to the SEE, which then accomplishes it by finding and
using the appropriate available Web services. Abstractly, the SEE contains a
service registry, a knowledge base that integrates the semantic service descrip-
tions. In this thesis, we do not concern ourselves with how a service registry
is populated, whether by explicit registrations from service providers or by an
automated crawler that attempt to find service descriptions on the open Web,
or by any other means.

In Figure 2.1, we illustrate a selection of the tasks that can be automated
by a SEE. In the figure, the user wants to arrange the accommodation for a
June vacation in Rome. We show four services with published descriptions: the
airline Lufthansa, and hotel reservation services for New York, Rome, and one

13
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Figure 2.1: Semantic Execution Environment (SEE) automation tasks

for the Marriott hotel chain worldwide.
To achieve the goal, the SEE first discovers services that may have hotels in

Rome, discarding Lufthansa which does not provide accommodation, and the
New York service which does not cover Rome. Then the SEE discovers offers by
interacting with the discovered services. The available offers in this particular
example are only three hotels: a 4* Marriott at the outskirts of Rome, and one 2*
and one 3* hotel in the city center. Then the SEE filters the offers depending on
the user’s constraints and requirements (minimum 3-star rating), ranks them
according to the user’s preferences (central location is more important than
price) and selects the best offer, in the end invoking the corresponding service.

For simplicity of the illustration, the figure does not show service composi-
tion, the task of combining multiple services in order to achieve more complex
functionalities. For example, if the user requests a comprehensive vacation pack-
age, the Lufthansa service would be used to book the travel, in combination with
the hotel services to book accommodation.

The following subsections discuss relevant literature on approaches to au-
tomating these tasks, especially looking for requirements on the semantics that
must be captured in service descriptions to support the automation. Due to
necessary limits on scope, this thesis does not deal in depth with semantic
mediation, which resolves any data and process heterogeneities, and service in-
vocation, especially the mapping between the semantic layer and on-the-wire
Web service messages. Therefore, mediation is omitted from the figure, and the
invocation step is included only for completeness of illustration.

2.1.1 Semantic Discovery and Matchmaking

The scope of the term “discovery” can be understood very widely, encompassing
a Web crawler that finds existing service descriptions, a matchmaker that selects
known services that match a given user goal, and a ranking mechanism that sorts
the matched services according to some measure of suitability. In this section,
we focus on service matchmaking, characterized by Klusch [61] as “pairwise
comparison of an advertised service with a desired service (query) to determine
the degree of their semantic correspondence.”

In 2001, Trastour et al. analyzed the features that a matchmaking system
should have, and from this analysis they derived requirements on languages for
service descriptions [119]. They identified the following requirements: i) high
degree of flexibility and expressiveness, ii) ability to express semi-structured
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data (by which they seem to mean incomplete data), iii) support for types and
subsumption, and iv) ability to express constraints. They observed that neither
UDDI or ebXML provided enough expressivity for advanced matchmaking with
rich and flexible metadata, and they suggested that “there is a need for using
ontologies,” for which they turned to the technologies of the nascent Semantic
Web. These insights are well reflected in later literature.

As an early effort, the actual matchmaker proposed by Trastour et al. relied
heavily on ontology-specific matching rules (e.g. a Sale service with the role seller
matches a Sale query with the role buyer), where later literature has focused on
identifying concrete types of semantics that support generic matching rules.

Klusch [61] presents the most recent survey of semantic service discovery
approaches. He categorizes semantic service matching approaches according to

• how matching is performed in terms of non-logic-based or logic-based pro-
cessing, or a hybrid combination of both, and

• what kinds/parts of service semantics are considered for matching.

In this thesis, we focus on logic-based matchmaking. Non-logic-based and
hybrid matching, which includes techniques of graph matching, data mining,
linguistics, or content-based information retrieval, uses measures such as text
similarity and path-length-based concept similarity to determine the degree of
service match. The results of a Semantic Service Selection Contest1 indicate
that logic-based and non-logic-based approaches have different strengths and
weaknesses and that hybrid approaches may give the strongest results.

Among logic-based approaches, Klusch investigates what kinds and parts
of service semantics are considered for matching in the various approaches,
especially pointing out how various approaches use different combinations of
the descriptions of service inputs, outputs, preconditions and effects (together
known as IOPE). For example, a PE matchmaker called PCEM [16] only uses
preconditions and effects, an IO matchmaker OWLSM [51] only uses the inputs
and outputs, and [54] presents an IOPE matchmaker for WSMO that uses all of
them. Notably, Klusch does not mention semantic matching based on subsump-
tion in hierarchies (classifications) of service types, which was identified among
service description requirements by Trastour et al.

In summary, semantic technologies, logics and ontologies are commonly ac-
knowledged as suitable for addressing service matchmaking. Service discovery
and matchmaking can use the following types of service semantics: inputs, out-
puts, preconditions, effects, and service classifications.

2.1.2 Semantic Offer Discovery

Semantic Web service offer discovery, as introduced in this chapter, is a subset
of a wider range of contract agreement and negotiation techniques, as discussed
for instance by Preist [93]. In this thesis, we use offer discovery as a representa-
tive example of negotiation techniques that is especially useful for e-commerce
services on the open Web.

The term negotiation has been used for different purposes in a variety of
computer science research areas, e.g. electronic commerce, grid computing, dis-
tributed artificial intelligence and multi-agent systems. In electronic commerce,

1http://www-ags.dfki.uni-sb.de/~klusch/s3/

http://www-ags.dfki.uni-sb.de/~klusch/s3/
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Beam and Segev [10] define negotiation as “the process by which two or more
parties multilaterally bargain resources for mutual intended gain.” As illustrated
by Bartolini and Preist [7], there are several different types of negotiations in
e-commerce: auctions (multiple buyers bid for price), double auctions (both
buyers and sellers bid for price, e.g. stock exchanges), one-to-one bargaining,
and even catalogue provision (price fixed by seller). Offer discovery is similar
to catalogue provision, as offer discovery effectively accesses and retrieves the
relevant parts of the offer catalogue.

Research on contract agreement and negotiation, for example in multi-agent
systems, have generally presumed a controlled environment with a predefined
set of interaction protocols for various tasks; for instance, a marketplace would
dictate a bargaining and auctioning protocol. Such an approach can be applied
to Web services, implying that a bargaining/auctioning protocol or a common
offer-query protocol would need to be standardized. An example of work in this
direction is the research of Paurobally et al. [86, 87], who propose an extension
to the WS-Agreement and WS-Conversation languages [129, 132] with XML-
based structures defining standard speech-act-like messages and transitions as
in interaction protocols; they employ an iterative Contract Net Protocol [112].
[86] deals with the level of communication languages and interaction protocols,
while [87] considers the negotiation subject and strategies.

In Semantic Web Services, we know of two published attempts that ad-
dress automation of negotiation and dynamic offer discovery: an “estimation
phase” of discovery by Küster et al. and the use of a “contracting interface”
by Zaremba et al; additionally, we have proposed an alternative offer discovery
approach (presented in Chapter 7) that relies on the safety property defined by
the Web architecture.

Küster et al. [67] describe a service basically as a template for the offers, and
parts of the offer data structure are marked as “estimation phase” parameters,
with simple ordering of predefined interactions by which the client can retrieve
the relevant offer data. In effect, this approach is similar to the one by Paurobally
et al. in that Küster et al. prescribe a protocol (the estimation interactions) that
would presumably be standardized. Their use of semantic annotations on the
offer data structures allows heterogeneity in the data layer, but no heterogeneity
is allowed on the communication layer of service operations.

Zaremba et al. [127, 149] talk about a so-called “contracting interface” with
an explicitly described operation choreography. In Zaremba’s contracting phase
of Web service discovery, the SEE client follows the predefined choreography and
the semantic annotations of the inputs and outputs to get information about
the relevant offers from a discovered Web service. In effect, the SEE can adapt
to the specific contracting interface of any Web service, as long as it is explicitly
described.

In our work [63], we have proposed an offer discovery approach that oppor-
tunistically uses operations classified as Web-safe to gather information about
service offers. We do not use an explicit contracting interface; instead, we use AI
planning on the inputs and outputs of safe operations. With this approach, the
SEE may be able to find out itself what the contracting interface is, lowering
the complexity of service descriptions.

We can see that to support automation of negotiation tasks such as offer
discovery in view of heterogeneous services, we require semantic descriptions
both of the services’ data and operations.
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2.1.3 Semantic Filtering and Ranking

To select the most appropriate service or offer for the client’s goal, the SEE must
rank the results of discovery according to the client’s preferences, and filter out
those that do not match the client’s constraints.

While functional matchmaking can provide coarse-grained matching degrees
(commonly for exact, plug-in and subsume matches, see [61]), these degrees are
not a good basis for service ranking because any matching service, independent
of the match degree, can potentially satisfy the user’s request.

To illustrate the inadequacy of functional match degree for ranking, let us
revisit the example of looking for a hotel in Rome. The matching degree ex-
presses how close a discovered service is to offering hotel reservations in Rome:
a local service for Rome is a better match than a nation-wide service with hotels
in Italy, which is itself a better match than a global service specialized in Mar-
riott hotels world-wide. But the matching degree does not evaluate anything
but the potential to be able to satisfy the client’s goal: here, if the user prefers
a high-quality hotel even if it is not centrally located, a Marriott hotel may be
the best option, regardless of the Marriott service being the worst functional
match.

Therefore, ranking is considered separately from functional matchmaking,
and involves different service description parameters. Typical filtering and rank-
ing parameters are nonfunctional Quality of Service (QoS) characteristics such
as reliability, availability, processing performance etc., and other information
such as location, price, or policies for security and data handling. O’Sullivan
et al. [81] presents an extensive analysis of nonfunctional service properties.

Nonfunctional ranking is inherently a multi-criteria decision-making problem
(see [50]) due to the presence of multiple parameters that cannot be directly
compared to one another. For example, where one user may settle for a low-
quality but cheap offer (such as a basic hotel located far from the center of
Rome), another user would rather pay more for better quality (e.g., a centrally
located four-star hotel). The relative importance of parameters such as price
and performance varies for different users and situations.

In practice, nonfunctional filtering is a simpler version of the problem of
ranking. For filtering, the client must specify a set of requirements that are
evaluated to produce a single binary (pass/fail) result for each discovered ser-
vice. For ranking, the client must specify preferences (sometimes called “soft
requirements”) that, when evaluated, must produce a combined ranking value
(usually on a numeric scale) that allows comparing services with different non-
functional properties.

Common NFP filtering and ranking approaches (such as [94] for filtering
and [70] for ranking) consider only numerical or keyword values for nonfunc-
tional properties. Toma et al. [118] argue that such approaches are inflexible
and that an ontological representation with the help of logical expressions al-
lows semantic ranking to provide more accurate results. In Toma’s approach,
the value of a nonfunctional property of a service may depend on the concrete
goal data: the service NFP description includes logical expressions that compute
concrete NFP values at run-time. For example, given a package described in the
goal data supplied by the user, the NFP expressions can compute the actual
price and the expected duration of shipping the package. The computed values
can then be used for filtering and ranking.
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In summary, to support automation of service filtering and ranking, we need
descriptions of the services’ nonfunctional properties. To be able to model rich
and dynamic scenarios, nonfunctional properties should be described semanti-
cally, with the help of logical expressions.

2.1.4 Semantic Service Composition

There are many different approaches to service composition, as shown by the
survey of Dustdar and Schreiner [25]. Among other aspects, the survey empha-
sizes the distinction between manual composition and automatic composition.
To support manual composition, research focuses on languages that describe
compositions, and tools that help the user with composing selected services. For
automated composition, research investigates languages for describing services,
and algorithms that use service descriptions to compose services that together
can achieve a specified goal. In the area of Semantic Web Services, the focus is
on automated composition.

Different automated composition approaches use varying levels of detail in
service descriptions. A recent example by Lecue and Leger [68] is a representative
of many approaches that match services into a sequence based on their inputs
and outputs. Such approaches assume that the inputs and outputs of a service
implicitly reflect the service’s functionality. More expressive approaches such as
the one proposed by Hoffmann et al. [42] use the preconditions and effects of
Web services as explicit functional descriptions, decoupling message types from
service functionality.

Composition on inputs and outputs, or on preconditions and effects, is com-
monly called functional-level composition, treating Web services as functions
with single points of input and output. In contrast, process-level composition
(e.g. [91]) takes into account the behavioral interfaces of the composed services,
treating services as processes rather than atomic functions.

Functional-level composition is tractable, but because it does not take into
account the services’ behavioral interfaces, the composition solutions are not
guaranteed to be actually executable. Rather, they support the human designer
with rich information about possible compositions. Ideally, only minor modifi-
cations should correct any remaining mismatches.

A further distinction in composition approaches, described by Petrie et al.
in [90], focuses on the end result of the composition process: whether it is a
reusable workflow supposed to cover many use cases that combine the com-
posed services, or it is a process instance that uses the services for a single use
case. Composing process instances is simpler and may result in more optimal
compositions, however it requires run-time handling of unexpected states.

Finally, it is important to consider the nonfunctional properties of service
compositions, such as the overall Quality of Service (QoS). For example, Cardoso
et al. [18] deal with QoS management in workflows made up of Web services.
Their work presents a model for computing the combined QoS parameters of a
composition from the QoS parameters of the constituent services; in particular,
the work deals with the time, cost and reliability of services. As automatic com-
position tools can potentially produce large numbers of possible compositions,
their combined QoS properties can be used for nonfunctional ranking and fil-
tering of the compositions, along the lines of ranking and filtering of services,
discussed in the preceding subsection.
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Figure 2.2: The structure of OWL-S (Fig. 1 from [74])

In terms of the requirements on service description, functional-level compo-
sition of process instances can use the descriptions of service inputs, outputs,
preconditions and effects, in accord with the descriptions used by service discov-
ery. Process-level composition, and composition into reusable workflows, further
requires the descriptions of the behavioral interfaces of the available services.
The computation of combined nonfunctional properties of compositions relies
on the presence of nonfunctional descriptions of the individual services.

2.2 SWS Description Frameworks

Both Web Services and Semantic Web are visions that stem from the growth
of the Web. As discussed by Lemahieu [69] in 2001, while the two visions and
their families of technologies were often perceived as radically different, the
ultimate goal of both is similar — making the Web a medium for machine-
to-machine interaction. Lemahieu argues that semantic technologies can and
should be applied to Web services, and points to DAML-S as an early example
of what we would call a SWS framework.

Among many later research proposals, three SWS frameworks stand out:
OWL-S and WSMO as two competing proposals with large bodies of associated
literature, and WSDL-S as a lightweight approach that became the basis for
SWS standardization. In this section, we analyze these frameworks, identifying
the problems they have left open; Section 2.3 gives a summary of these problems
and identifies those that we address in this thesis.

2.2.1 OWL-S: Semantic Markup for Web Services

As the W3C worked on the Web ontology language OWL, the early proposal
DAML-S [77, 117] was evolved into OWL-S [83, 74]. OWL-S provides three types
of knowledge about a service (as shown in Figure 2.2, from [74]):

• Service profile, used to advertise the service, describes what the service
provides for prospective clients.

• Service model “tells a client how to use the service, detailing the semantic
content of requests, the conditions under which particular outcomes will
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occur, and, where necessary, the step by step processes leading to those
outcomes.” [74]

• Service grounding adds details such as the communication protocol and
message formats and data serializations, allowing clients to invoke the
service.

The service profile in OWL-S mainly describes the inputs, outputs, precon-
ditions and effects (called results in OWL-S), and it also adds properties (dep-
recated in later versions of OWL-S) for pointing to categories is some ontologies
or taxonomies of services and products.

The service model views a service as a process, with one or more steps
that describe how a client can interact with the service. In practice, OWL-S
descriptions use atomic processes to describe the WSDL operations of a ser-
vice, and composite processes to describe the dependencies and interactions
among the operations. Composite processes support data flows and common
control constructs such as conditional branching, loops, and parallel execution
with synchronization. Each (sub)process is specified through its inputs, outputs,
preconditions and effects; expecting that ideally “the IOPE’s published by the
Profile are a subset of those published by the Process.” [74]

OWL-S provides grounding to WSDL services. [74] presumes that for com-
munication with the service, “the message parts will be serialized in the normal
way for class instances of the given types, for the specified version of OWL,”
which would presumably be some RDF syntax. However, we know no WSDL
services (or Web APIs either) that would communicate using OWL data, there-
fore there is a need for lowering OWL data into real-world messages, and lifting
data from real-world messages into OWL. This is partially addressed by work
on grounding OWL-S into SAWSDL [85, 75], where OWL-S gains the use of
SAWSDL’s lifting and lowering schema mapping annotations.

We are not aware of any publication that would specify the grounding of
OWL-S service descriptions onto RESTful services/Web APIs that are not de-
scribed in WSDL.

2.2.2 Web Service Modeling Ontology WSMO

The Web Service Modeling Ontology WSMO [105, 22] is a refinement and an
extension of the fully-fledged Web Service Modeling Framework WSMF [26],
providing a formal ontology and language for capturing actual descriptions.
WSMF introduced and WSMO refined a top-down conceptual model for SWS
with four top-level components: web services, goals, ontologies, and mediators.

Web services are described in WSMO mainly through their functional ca-
pabilities and behavioral interfaces. A capability defines the functionality of a
Web service through preconditions, assumptions, postconditions and effects, all
captured as logical expressions. WSMO makes a distinction between precon-
ditions and postconditions on the information space of the Web service, and
assumptions and effects that describe the state of the world. While WSMO
capability description does not explicitly mention inputs and outputs, these
aspects are still covered in the preconditions and postconditions, seeing the in-
coming/outgoing messages as part of the service’s information space.

An interface of a Web service describes how the functionality of the service
can be achieved. Here, WSMO distinguishes two sides of the service — an outer
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choreography interface that describes how the clients should interact with the
service, and an inner orchestration that defines how the service makes use of
other Web services in order to achieve its capability.

Both choreography and orchestration may involve grounding to concrete
service(s). In WSMO, service descriptions can be grounded in WSDL or in
SAWSDL, with data serialization (lifting and lowering) handled with ontology
mediation. We know of no effort to provide grounding for WSMO descriptions
in RESTful services or Web APIs that do not use WSDL.

In addition to the functional and behavioral aspects, a Web service descrip-
tion can be annotated with nonfunctional properties, which is especially useful
for comparing services that are functionally equivalent with respect to some
particular client goal.

WSMO further discusses the description of client goals, structurally sim-
ilar to service descriptions. Mainly, a goal can request a particular capability
(which is then matched against known services in discovery), and any desired
nonfunctional properties (for filtering and ranking of discovery results).

WSMO provides a rich family of languages for describing ontologies, which
are the basis for WSMO Web service and goal descriptions. Defined before the
W3C standardization efforts on OWL 2 and RIF, which improve the logical lay-
ering and rule support of the Semantic Web standards, the ontology languages
(collectively named WSML for Web Service Modeling Language) cover a wide
range of expressivity and computational characteristics. The least expressive
language WSML-Core is extended in two separate branches: towards descrip-
tion logics in WSML-DL, and towards logic programming in WSML-Flight and
WSML-Rule. The branches are joined in WSML-Full, which corresponds to an
extended first-order logic.

Finally, WSMO deeply analyzes various types of mediators, which other
frameworks relegate to a role of infrastructure components. Here, WSMO ac-
knowledges the heterogeneity inherent in global service-oriented systems. In
particular, WSMO declares four types of mediators: ggMediators link two goals,
making it possible to map between goals, or to define one goal in terms of others.
ooMediators are used in any WSMO descriptions to import ontologies through
alignment, merging or mapping. wgMediators link Web services to goals, for
example to state that a Web service (totally or partially) fulfills the given goal,
providing the necessary data or process mappings. Another use for wgMediators
is to allow for run-time late binding of third-party services in an orchestration.
Finally, wwMediators can be used especially in service orchestrations to resolve
data or process mismatches when one Web service uses another.

2.2.3 WSDL-S and SAWSDL

WSDL-S [1] is an extension of WSDL that brings semantic descriptions closer to
the underlying Web services technologies. It was developed in the METEOR-S2

project, and it defines five extension elements and attributes for WSDL and
XML Schema:

• modelReference extension attribute that specifies the association between
a WSDL or XML Schema entity and a concept in some semantic model.

2http://lsdis.cs.uga.edu/projects/meteor-s/

http://lsdis.cs.uga.edu/projects/meteor-s/
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Figure 2.3: The structure of WSDL with SAWSDL annotations

• schemaMapping extension attribute for XML Schema elements and com-
plex types, used for handling structural differences between the schema
and their corresponding semantic model concepts. For data serialization,
[1] discusses the use of XSLT and XQuery.

• precondition and effect elements, for use as children of the WSDL
operation element, mainly to support service discovery. WSDL-S does
not prescribe or define any actual logical language for capturing the pre-
condition and effect expressions.

• category element, for use in the WSDL service element, also intended
to support dynamic service discovery.

The positioning of WSDL-S as an extension of WSDL removes all need for
grounding, but it also means that WSDL-S, as such, cannot support RESTful
services that do not have WSDL descriptions.

WSDL-S was taken as the basis for SWS standardization in the W3C, which
resulted in the recommendation called Semantic Annotations for WSDL and
XML Schema (SAWSDL, [107, 64]). The resulting specification adopted the
modelReference attribute from WSDL-S, and elaborated the schemaMapping

attribute into a pair of attributes, one for a lifting mapping, and the other for
lowering.

Figure 2.3 sketches the structure of WSDL and shows the expected uses of
SAWSDL annotations in solid arrows. However, SAWSDL does not preclude the
use of its annotation to the elements discussed in the specification, therefore the
dotted arrows show that model references can indeed be present on any WSDL
component.

Unlike WSDL-S, SAWSDL does not define concrete means for expressing
service preconditions, effects, or categories; it is assumed that such information
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can be attached with model references. Indeed, as SAWSDL does not specify
any service semantics, it cannot be called a SWS framework.

2.3 Open Problems

In Section 2.1, we have identified the following types of semantics used by au-
tomation approaches:

• Inputs and outputs are used by many discovery, offer discovery and com-
position approaches.

• Preconditions and effects are also commonly used for discovery and com-
position.

• Classifications (of services and operations) help in discovery and offer dis-
covery.

• Nonfunctional properties enable ranking and filtering.

• Behavioral descriptions of services are necessary for process-level compo-
sition, and can also be used in offer discovery.

Describing the semantics of services is the function of SWS frameworks. In
Section 2.2, we have looked at three existing frameworks and on the lightweight
standard SAWSDL; here is a high-level summary of how they cover the above
types of semantics:

• WSMO can express inputs, outputs, preconditions and effects on a service,
and within a choreography, which is a behavioral description of the service,
it can express IOPEs on operations as well; note, however, that inputs
and outputs are described within logical expressions, rather than through
direct references to ontology classes, as is common in other frameworks.
WSMO has no explicit support for service or operation classifications. On
the other hand, it has comprehensive support for nonfunctional properties.

• OWL-S directly describes inputs, outputs, preconditions and effects both
on services and on operations, and it describes the process (behavioral)
model of services. It deprecates the properties for service categorization,
and it has no explicit support for nonfunctional properties.

• WSDL-S annotates the inputs, outputs, preconditions and effects of op-
erations, but not the IOPEs of services. It provides explicit support for
categorizations of services, and implicit support for categorization of oper-
ations. WSDL-S does not put operations together in any kind of behavioral
descriptions, nor does it include support for nonfunctional properties.

• SAWSDL has clear support for annotating the inputs and outputs of ser-
vice operations. The specification is built on the assumption that all other
types of semantics can be attached to service descriptions through the
model reference construct, but it does not provide concrete mechanisms
for expressing any of them.

WSMO has a comprehensive scope and coverage of various aspects of formal
descriptions in service-oriented systems, which can make it seem detached from
standards (both Web service and Semantic Web technologies), and intimidating
in the required learning curve. OWL-S has a strong focus on low-level process
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modeling, which may obscure the simplicity of the framework in common set-
tings. To avoid such perceptions, SAWSDL takes a minimalistic, lightweight and
modular approach to providing semantic annotations for service descriptions: it
is minimalistic in that SAWSDL only defines the bare minimum of constructs;
it is lightweight because SAWSDL does not require any advanced processing or
complex descriptions; and it is modular because SAWSDL annotations are not
inherently interdependent, so they can be used on any subset of WSDL elements
as suits a particular application. Work building on SAWSDL should also adopt
these traits.

The finalization of SAWSDL created the first open problem: there is no on-
tology for service semantics that can be used in SAWSDL model reference anno-
tations to support SWS automation. Any work to address this problem should
be able to express the above types of semantics, and it should use mechanisms
similar to those developed in the previous frameworks, in order to encourage
the adaptation of existing automation algorithms.

It should be noted that SAWSDL, despite its principal relationship to WSDL,
is not actually specific to WSDL or XML Schema in any way. The attributes
can be used in other XML-based service and schema description languages, and
the RDF properties defined by SAWSDL can be used with any semantic service
or schema model. The public Web contains increasingly many services that are
in fact not described in WSDL, especially the RESTful services and Web APIs
mentioned in the introduction chapter. RESTful services pose the second prob-
lem: there are no models and approaches for semantic descriptions of RESTful
services. In order to extend the benefits of SWS automation to RESTful ser-
vices as well, there is a need for research on how to overcome the reluctance of
RESTful service providers towards machine-oriented service descriptions, and
how these descriptions would be amenable to semantic annotations, optimally
with SAWSDL.

In this thesis, we address both problems: we propose a minimalistic, light-
weight and modular ontology of service semantics for use in SAWSDL annota-
tions, and we also propose lightweight mark-up mechanisms for existing (human-
oriented) descriptions of RESTful services to make them machine-processable,
and suitable for semantic annotations through SAWSDL.



Chapter 3

Background

This chapter contains the description of all the background technologies used in
our work, or directly relevant to it. A knowledgeable reader is welcome to skim
over it or even skip it entirely; this chapter does not introduce any new results,
in merely serves as a reference, to make this thesis a self-contained work.

We start in Section 3.1 with the reference model of service-oriented architec-
tures, defined in the standardization organization OASIS. Then we proceed to
common Web technologies in Section 3.2, WS–∗ technologies in Section 3.3, and
technologies specific to RESTful services in Section 3.4. Finally, we talk about
relevant Semantic Web technologies in Section 3.5.

3.1 OASIS Reference Model for SOA

The term “service” in its modern usage comes from economics. The services
sector now dwarfs agriculture and manufacturing, the original main sectors of
economy; its boom has recently spawned a Services Science [19], which deals
with terms such as “exchange of goods” and “economic entities”. In IT, there
have been several efforts to define service models and conceptualize services and
service-oriented architectures, activities initiated in academic research (e.g. [6,
93, 29]) as well as in the context of standardization bodies (esp. [100], discussed
below).

The term “Web service” started in association with a set of concrete tech-
nologies for distributed computing, especially WSDL and SOAP, as shown in
the W3C’s Web Services Architecture document [130]. Service-oriented archi-
tecture (SOA) is an abstraction of Web services: it is oriented toward large-scale
distributed systems, and it sheds the technology bias of “Web services”. SOA is
currently best articulated by the OASIS consortium’s industry-standard Refer-
ence Model for Service Oriented Architecture (SOA RM [100]), which defines a
service as follows:

A service is a mechanism to enable access to one or more capabili-
ties, where the access is provided using a prescribed interface and is
exercised consistent with constraints and policies as specified by the
service description.

25
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Figure 3.1: Top-level components of the OASIS SOA RM (Fig. 3 from [100])

Figure 3.2: Interaction model in the OASIS SOA RM (Fig. 6 from [100])

Figure 3.3: Service description model in the OASIS SOA RM (Fig. 9 from [100])
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The SOA RM investigates a number of aspects of services; the top-level six
(shown in Figure 3.1) are Service description1, Visibility, Execution context,
Real-world effect, Contract and policy, and Interaction. In the following, we give
a brief summary of the aspects that are relevant for our work; note that the
figures are concept maps where arrows denote dependencies.

A service in SOA is generally not a single physical artifact, instead it is a
concept useful for manageability. From the point of view of a client, the physical
artifacts of a service are its network location (part of the Visibility aspect) and
the service description.

Figure 3.2 details the components of the interaction model in SOA RM,
which deals with how a client interacts with a service. The interaction model is
described by the behavior model of the service, and influenced by the informa-
tion model. The RM splits the behavior model into “actions” — the operations
that can be invoked on a service — and “process” that specifies the valid or-
derings of the operations. The information model is concerned both with the
semantics of the data and with data structures and exchange formats.

Figure 3.3 shows the components of a service description: the reachability
aspect gives us technical parameters and the network location where the service
is available, the functionality aspect describes what the service does, the contract
and policy aspect specifies nonfunctional properties, and the service interface
aspect describes the data and the behavior of the service.

The SOA RM gives us a general service model structure and it points out
useful distinctions that help us define a lightweight service and semantics model
in Chapter 4.

3.2 Common Web technologies

In this section, we touch on Web technologies that are common in Web services.
Technologies specific either to WS–∗ or to RESTful services are discussed in
Sections 3.3 and 3.4, respectively.

We begin with the structured data formats XML and JSON, and then we
talk about the foundation technologies of the Web — URI and HTTP.

3.2.1 XML

Extensible Markup Language (XML [138]) is a text format derived from SGML
(ISO 8879). In the context of Web services, XML is used mainly for exchanging
structured data.

Without delving into complexities that are seldom used, we can say that the
data model of XML is a tree, starting with a single root element that can have
an unordered set of string-valued attributes and either a string value within
the element, or an ordered set of child elements, through which the structure
becomes recursive.

Both elements and attributes are named, and to prevent naming conflicts,
XML provides a name space mechanism that uses URIs as name space iden-
tifiers. Within a single element, the attributes must have unique names, while
there is no such requirement on the child elements whose names are uncon-
strained and can be repeated.

1In the text we emphasize with italics the terms defined by the SOA RM.
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1 <app:service xmlns:app=”http://www.w3.org/2007/app” xmlns:atom=”http://www.w3.
org/2005/Atom”>

2 <app:workspace>
3 <atom:title>Main Site</atom:title>
4 <app:collection href=”http://example.org/blog/main” >
5 <atom:title>My Blog Entries</atom:title>
6 <app:categories href=”http://example.com/cats/blog.cats” />
7 <app:accept>application/atom+xml;type=entry</app:accept>
8 </app:collection>
9 </app:workspace>

10 </app:service>

Listing 3.1: Example XML AtomPub Service Document

Listing 3.1 shows an example XML document, in this case an Atom Pub-
lishing Protocol Service Document (discussed in Section 3.4.3). It combines two
namespaces (atom and app) because the service document format reuses vocab-
ulary from the general Atom format. The listing shows elements child elements,
elements with attributes (e.g. app:collection), and elements with string values
(e.g. atom:title).

To describe custom data structures, such as the messages accepted and pro-
duced by a Web service, there is a schema language called XML Schema [140],
itself written in XML. A schema can specify the allowed attributes on an ele-
ment, the allowed data types of values of attributes and string-valued elements,
and the allowed sequences of child elements. An XML Schema can be used
both for data format description (to communicate an agreed format) and for
structural validation (to check that a particular XML document or message
conforms to the expected structure). Later in this chapter, Listing 3.3 contains
a self-explanatory example schema.

XML has a large ecosystem of supporting technologies, including the follow-
ing query and manipulation languages:

• XPath [142] is a language for expressions that identify nodes within XML
documents; for example /app:service//atom:title selects both title

elements in our example.

• XSLT [146] is a declarative transformation language, itself in XML, for
transformation of XML documents. It uses XPath to select and access
data in the source document. XSLT can output XML, HTML or plain
text.

• XQuery [143] is a functional query language that works over collections of
XML data, also using XPath. XQuery has a specific syntax that is much
more concise than XSLT.

3.2.2 JSON

While XML is likely the most common format for structured data exchange,
its processing in Web applications that run in the browser was historically slow
and complex, therefore an alternative format has emerged, aimed for relatively
short messages with structured data: JavaScript Object Notation (JSON [53]),
a lightweight data format derived from the JavaScript language.2

2https://developer.mozilla.org/en/JavaScript

https://developer.mozilla.org/en/JavaScript
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1 {
2 ”service”: {
3 ”workspace”: {
4 ”title”: ”Main Site”,
5 ”collection”: {
6 ”href”: ”http://example.org/blog/main”,
7 ”title”: ”My Blog Entries”,
8 ”categories”: ”http://example.com/cats/blog.cats”,
9 ”accept”: ”application/atom+xml;type=entry”

10 }
11 }
12 }
13 }

Listing 3.2: Example JSON, illustrating data from Listing 3.1

A JSON message can represent four primitive types (strings, numbers, bool-
eans and null) and two structured types (objects and arrays). Listing 3.2 shows
the data from the XML example earlier, as it might look like in JSON.

In comparison to XML, JSON has no explicit support for namespaces; on
the other hand, its syntax distinguishes directly between an object with fields
and an array with ordered items — XML does not provide for such distinction.
But the main difference in the intended environment (a JavaScript engine) is
that JSON can be manipulated natively, whereas XML data needs an access
API (called DOM — Document Object Model) which is commonly perceived
as unwieldy.

3.2.3 Uniform Resource Identifier

Uniform Resource Identifier (URI [123]) is a syntax for identifiers and addresses
on the internet, devised along with the World Wide Web. A typical URI taken
from the examples above is

http://example.com/cats/blog.cats

which identifies the resource /cats/blog.cats at the server example.com, ac-
cessed through the HTTP protocol. Beside these components, URIs can com-
monly also have so-called query parameters, which customize or specialize the
main resource, and so-called fragment identifiers, which usually identify a part
of a document.

URIs can be used as addresses (to locate and access some content or service
on the internet), or as names for things, especially on the Semantic Web (see
Section 3.5).

In addition to concrete URIs, several syntaxes have been proposed for URI
templates, e.g. within WSDL 2.0 [134]. A URI template describes a simple
schema for creating URIs with parameters (not restricted to be query parame-
ters). For example,

http://example.com/cats/{type}.cats
could prescribe the URI for the categories file for a given type (the {type}
parameter); if the desired type is blog, the URI would be the one we’ve shown
above. URI templates are mainly used in service descriptions, to specify how a
client should create specific URIs depending on what they need.
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3.2.4 HTTP

Hypertext Transfer Protocol HTTP [49] is the application-level network protocol
of the World Wide Web. It defines the following main methods for accessing Web
resources, identified by URIs:

• GET requests a representation of the resource (e.g. a Web page), HEAD
requests only its metadata (content type, size, time of last update etc.);

• PUT updates (replaces) the content of a resource with the submitted data;

• DELETE removes the resource;

• POST submits data to the resource for processing, for instance to create
a new resource (such as adding an item to a collection) or to update an
existing one;

• OPTIONS asks for the HTTP capabilities of a resource; TRACE asks the
server to echo the request, for debugging purposes; and CONNECT is used
to switch to some other agreed protocol.

Of these, GET, PUT, POST and DELETE are the main functional methods,
akin (but not equivalent to) the common database CRUD operations Create,
Read, Update and Delete. To access PUT, POST and DELETE, a server com-
monly requires proper authentication, for which HTTP provides several meth-
ods.

The four methods have distinct specified semantics: PUT and DELETE
are idempotent (repeating the request will have the same end effect), which
is useful in face of network failures; and GET is safe, as defined in the Web
architecture [3]:

A safe interaction is one where the agent does not incur any obli-
gation beyond the interaction. An agent may incur an obligation
through other means (such as by signing a contract). If an agent
does not have an obligation before a safe interaction, it does not
have that obligation afterwards.

A canonical example of a safe interaction in distributed systems is informa-
tion retrieval: an e-commerce client may, for example, use a catalogue search
interface, yet by issuing a search query the client makes no commitment to
purchase any items. Safe operations are effectively idempotent (but idempotent
operations need not be safe).

Because of the method’s safety, GET can be used opportunistically by auto-
mated agents — this enables pre-caching, crawling the Web for search engines,
and the so-called following your nose, which means resolving links in data to
retrieve more data.

HTTP is heavily metadata-driven: it can do conditional operations, such as
retrieving the resource only if it has changed since the client’s last copy (this
is part of HTTP’s extensive caching machinery); it can also perform content
negotiation, where the client expresses preferences over content types (on a data
table such as a calendar, a browser would prefer HTML for human viewing, while
an automated tool could prefer some machine-oriented format such as iCalendar
for data processing).
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3.3 WS–∗ technologies

In this section, we give a brief overview of technologies that make up the WS–∗
stack. We start with the protocol SOAP, then detail the service description
language WSDL, and finally we touch on other relevant technologies.

3.3.1 SOAP

SOAP [113], originally called Simple Object Access Protocol, is an XML-based
messaging protocol for Web services. The specification has three main com-
ponents: an extensible message structure, a processing model, and a binding
framework for transmitting SOAP messages over communication protocols.

The message structure splits the XML message into a set of headers with
processing metadata, and the body which contains the payload of the message.

The processing model defines a notion of an intermediary — a message pro-
cessor that is not the final recipient of the message but that is part of the overall
application. Common types of intermediaries would perform tasks such as log-
ging, encryption/decryption and message routing. Individual message headers
can be targeted at specific intermediaries. To facilitate distributed extensibility,
the processing model specifies that headers can be marked as mustUnderstand
— if the receiving processor does not support such a header, it must cease any
processing and respond in a predefined fashion, so that the sender of the message
learns early what requirements cannot be met.

Finally, the binding framework contains concepts necessary for defining how
SOAP messages should be transported over concrete communication protocols.
The W3C has defined a normative HTTP binding, where SOAP messages can be
involved in GET and POST requests; and also an email binding3 that transfers
SOAP messages over email infrastructure, especially using the SMTP message
delivery protocol. Third parties have defined bindings over UDP [121], JMS
(Java Messaging Service, [52]) and other communication protocols.

3.3.2 WSDL

WSDL 2.0 [133] is a language for describing Web services. In particular, it can
describe the structure of the messages the service accepts and produces, simple
message exchanges (called operations) and all the necessary networking details.
On top of this, extensions in WSDL documents can specify that additional
features are supported or even required by the service. In effect, WSDL specifies
a limited contract that the service adheres to.

The core WSDL specification defines a fairly simple set of components; at
the top level, the main ones are the Interface, Binding and Service components,
as illustrated in Figure 3.4.

An Interface describes the abstract interface of a Web service — the oper-
ations, messages and faults. Every operation follows some pre-defined message
exchange pattern (MEP). An MEP in WSDL prescribes the number and di-
rectionality of messages, and the operation populates them with concrete XML
elements, defined in XML Schema. Most MEPs also allow fault messages for

3http://www.w3.org/TR/soap12-email

http://www.w3.org/TR/soap12-email
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Figure 3.4: The structure of WSDL, with components in solid boxes, and other
concepts in dashed boxes.

expected application-level errors. Faults are modeled on the same level as oper-
ations, that is, an interface defines a number of faults which are then used by
operations.

WSDL 2.0 pre-defines eight Message Exchange Patterns; we will show
the core three to illustrate the concept:

• In-Only is the simplest MEP — it defines that there is only a single input
message from the client to the service. This is used for fire-and-forget-style
interactions; the service can notably not even respond with a fault.

• In-Out is by far the most common MEP, as it defines the standard request-
response style operations. The MEP starts with an input message, which
is followed either by an out message or by an out fault.

• Robust In-Only is a messaging-style MEP where the client sends an input
message and does not expect a response, except that the service can still
send a fault to notify the client if anything is wrong.

While WSDL does not constrain the number of messages in MEPs, we as-
sume in our work that there can only be one input message and one output
message in any MEP. This fits all eight of the WSDL-predefined MEPs. [80]
proposes a multi-party MEP that can use multiple input messages and multiple
output messages, but it still defines one message type for all the input messages
and one for all the output messages, therefore the assumption still holds on the
level of semantic descriptions.

An interface is specified on the level of XML messages; the networking details
about how the messages are represented on the wire are specified in the next top-
level WSDL component — the Binding. This component follows the structure
of the Interface and uses extensions to specify any protocols and networking
parameters.
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The last top-level WSDL component — Service — provides a number of
Endpoints where a service is available. An Endpoint specifies an actual address,
together with a Binding that indicates how the client should communicate with
that address.

Listing 3.3 shows an example WSDL document (adopted from the WSDL
Primer [135]) that describes a simple hotel service. Its interface provides a single
operation for checking the availability of rooms for a given date. Abstractly (i.e.,
on the Interface level), the operation accepts the dates of check-in and check-
out and the required type of room, and it returns the daily rate of available
rooms, or zero if nothing is available. In case the room type or input dates are
erroneous, a fault can be generated. The Binding level specifies that the data will
be transmitted with SOAP over HTTP, plus several other details. Finally the
Service level gives one endpoint address, at which the hotel service is available.

WSDL is, by design, a very extensible language, and in fact some parts of the
standard are built as predefined extensions (see [134]). WSDL is mainly extended
through predefined extension points — those places in WSDL descriptions where
a number of options is defined by WSDL, but the list is open. For example,
WSDL defines two binding types and eight message exchange patterns, but
third parties are free to define new ones, where required.

Further, WSDL is open to XML-based extensibility, i.e. any WSDL element
can contain any number of attributes or elements from a foreign (non-WSDL)
name space. Such extensions are not constrained in what they may mean. In
general, extensions add properties to the existing WSDL components, so that
the processor can use the extended information. As we cannot expect all WSDL
processors to know all the extensions they might encounter, extension elements
in WSDL are by default optional, but they may be marked mandatory. Optional
extensions can be ignored by a processor that does not recognize them, whereas
mandatory extensions must be understood by a processor that needs to process
the parent WSDL element. This allows mandatory extensions to change the
meaning of the parent WSDL element.

SAWSDL is an example of an optional WSDL extension that uses the XML-
based extensibility.

3.3.3 Brief overview of other relevant WS–∗ technologies

The WS–∗ family of specifications is quite extensive,4 here we mention several
of them that pertain to service description.

Universal Description Discovery and Integration (UDDI [120]) is
a specification for a registry of businesses and their Web services. It was origi-
nally backed by a public, openly-accessible deployment, which was discontinued5

in 2006. As pointed out by [26], UDDI provided “limited support in mechaniz-
ing service recognition, service configuration and combination (i.e., realizing
complex workflows and business logics with web services), service comparison
and automated negotiation,” which led to further service description efforts. As
UDDI was not extensible, it was unable to support these advanced descriptions.
No other service registry standard has been proposed yet.

4Its size is illustrated by an overview poster available at http://www.innoq.com/soa/

ws-standards/poster/
5As reported by http://soa.sys-con.com/node/164624

http://www.innoq.com/soa/ws-standards/poster/
http://www.innoq.com/soa/ws-standards/poster/
http://soa.sys-con.com/node/164624
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1 <description targetNamespace=”http://hotel.example.com/wsdl” ...>
2 <types>
3 <xs:schema ...>
4 <xs:element name=”checkAvailability” type=”tCheckAvailability”/>
5 <xs:complexType name=”tCheckAvailability”>
6 <xs:sequence>
7 <xs:element name=”checkInDate” type=”xs:date”/>
8 <xs:element name=”checkOutDate” type=”xs:date”/>
9 <xs:element name=”roomType” type=”xs:string”/>

10 </xs:sequence>
11 </xs:complexType>
12 <xs:element name=”checkAvailabilityResponse” type=”xs:double”/>
13 <xs:element name=”invalidDataError” type=”xs:string”/>
14 </xs:schema>
15 </types>
16

17 <interface name=”hotelIface”>
18 <fault name=”invalidDataFault” element=”tns:invalidDataError”/>
19 <operation name=”checkAvailability”
20 pattern=”http://www.w3.org/2006/01/wsdl/in−out”>
21 <input element=”tns:checkAvailability”/>
22 <output element=”tns:checkAvailabilityResponse”/>
23 <outfault ref=”tns:invalidDataFault”/>
24 </operation>
25 </interface>
26

27 <binding name=”hotelSOAPBinding”
28 interface=”tns:hotelIface”
29 type=”http://www.w3.org/2006/01/wsdl/soap”
30 soap:protocol=”http://www.w3.org/2003/05/soap/bindings/HTTP”>
31 <fault ref=”tns:invalidDataFault”
32 soap:code=”soap:Sender”/>
33 <operation ref=”tns:checkAvailability”
34 soap:mep=”http://www.w3.org/2003/05/soap/mep/soap−response”/>
35 </binding>
36

37 <service name=”hotelService” interface=”tns:hotelIface”>
38 <endpoint name=”hotelEndpoint”
39 binding=”tns:hotelSOAPBinding”
40 address=”http://hotel.example.com/service”/>
41 </service>
42 </description>

Listing 3.3: Example WSDL hotel service description



Section 3.4. RESTful Web services 35

Web Services Policy [131] is a general-purpose model to describe the
policies of entities in a Web-services-based system. A policy can describe any
capabilities, requirements, and general characteristics of both services and their
clients, using combinations of policy assertions. As an example of policy asser-
tions, we can mention the W3C WS-SecurityPolicy [2] specification. There has
been work such as [124] on semantic representation and matching of policies,
usually treating policy information as nonfunctional properties.

3.4 RESTful Web services

As we’ve discussed in the introduction chapter, there is a growing number of
Web services that do not use SOAP and WSDL; instead they are built more
directly on HTTP. They are commonly called RESTful services (those that
follow the REST architectural style of the Web) or Web APIs (programming
interfaces for Web applications). We use the terms RESTful services and Web
APIs interchangeably in this thesis; however, we must note that many Web APIs
disregard most of the REST principles.

In this section, we discuss the main technologies that are used by RESTful
services and Web APIs; we start with a description of the REST architectural
style, then we move to the various ways of describing the services, both in
human-oriented and machine-oriented forms.

3.4.1 REST

Representational State Transfer (REST, [30]) is the name of an architectural
style developed by R. Fielding as a formalization of the architectural principles
underlying the World-Wide Web. REST is composed of a number of constraints
that ensure certain beneficial properties of the resulting architecture. These
properties have made the Web scalable and evolvable, so it could have grown
to the size and popularity it has today, without showing any signs of inherent
barriers to future growth.

The Web was designed to be (and is) an internet-scale distributed hyperme-
dia system. This goal implies certain requirements, which affect REST as well.
In particular, the Web needs to be:

• simple, with a low barrier of entry, to attract users and developers;

• extensible, to be able to grow past the initial simplicity;

• distributed hypermedia, to be able to use the power of many internet
hosts;

• anarchically scalable, to isolate performance issues of independent parts;

• independently deployable, both in terms of hosts and in terms of protocols
and data formats, to allow gradual evolution and coexistence of old and
new components;

• human-oriented, both optimized for better user experience, and tolerant
of humans’ erratic interactions with the system.

The REST architectural style contains the following ingredients (which are
themselves simpler architectural styles):
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Client-server. This style separates the concerns of the server (serving data,
processing user inputs) from those of the client (user interface, presen-
tation and interaction). This simplifies portability of the user interface
even to platforms that would not support servers, and it also allows the
components to evolve independently.

Layering. While an actual system may consist of hierarchical layers that build
one on another, the components are constrained only to see the immediate
layers with which they interact. This restriction puts a bound on the
overall system complexity and promotes component independence, while
adding overhead and latency to the interactions, which are mitigated by
the increasing performance of computers and networks.

Stateless communication. “Each request from client to server must contain
all of the information necessary to understand the request, and cannot
take advantage of any stored context on the server.”[30] To understand
this constraint, we must separate the state of an application into the state
of resources on the server, and the state of the interaction (also known as
the session) between the client and the server.

In traditional client-server systems, the server keeps a separate session
open for each client, which simplifies the communication. For instance, in
a search engine, the response to a search request (e.g. “hotels in Rome”) is
a list of the ten most relevant results. In a stateful system, the client may
follow up with a request for the following 10 results, and the server knows
that the client wants results 11–20. If the same request (the following 10
results) is repeated, the response will contain results 21–30, and so on. In
a stateless system, the client must always tell the service what exactly it
wants: it would request results 21–30 of the search for “hotels in Rome,”
for instance.

This constraint adds communication overhead (again, mitigated by in-
creased performance of newer networks), and it makes servers relinquish
some of the control over how the application proceeds. On the positive
side, stateless communication improves the scalability of servers (by free-
ing their resources between requests) and the reliability of applications
(by simplifying the task of recovering from partial failures), as discussed
in [101].

Uniform interface. All the components in a RESTful system must support a
single uniform interface. In Section 3.2.4, we have discussed the methods
of HTTP, especially including GET, POST, PUT and DELETE.

The fact that the interface is uniform means that all components can
speak to each other. With a single interface, a Web browser can access any
Web resource, and there is no need for specialized browsers for different
resources; implementations are decoupled from the applications. REST
uniform interface is optimized for large-grain hypermedia data transfer,
which is not necessarily efficient for all applications.

Caching. To improve network efficiency and server scalability, components on
the Web are allowed to cache responses marked as cacheable. ISPs (Inter-
net Service Providers) and organizations may deploy large caches to lower
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the bandwidth used by the users of the Web; but also the client browser
incorporates a cache to improve the perceived performance. Caching in-
troduces the potential problem of data inconsistency, but the human users
of the Web handle this problem easily.

Code on demand. Finally, REST allows client functionality to be extended
by downloading and executing code from the server. Such code is common
as scripts inside Web pages (most commonly in JavaScript), or as embed-
ded programs such as Java applets and Flash programs. By allowing code-
on-demand, the client software only needs to implement a reduced set of
required features. A common example of user interface extensions through
code-on-demand is in-page menus, not natively supported by HTML and
Web browsers.

These constraints are all applied to the architecture of the Web, as embod-
ied mainly in the Hypertext Transfer Protocol HTTP. Nevertheless, some of
these constraints cannot be easily enforced, and it is common for Web sites to
break some of them (most notably, the stateless communication constraint is
often broken by using cookies for session maintenance), which may result in
suboptimal user experience.

Further, the hypermedia aspect of the Web leads to a further pair of require-
ments that affect Web architecture, especially in the area of document formats:

Links and connectedness. Resources on the Web must be able to refer (link)
to other resources, the user must be allowed to navigate the resulting graph
of links freely.

Addressability. Stemming from the requirement for links, it is necessary that
all resources are addressable. For this, REST uses URIs.

REST was designed with the human-oriented Web in focus; however, the
constraints can also be applied to machine-oriented Web services. An automated,
machine-oriented Web application or service is said to be RESTful when it
uses the uniform interface (using all the methods as appropriate), when its
communication is stateless, and when it enables cacheability.

In contrast to RESTful Web services, traditional SOAP-based Web services
commonly only use the POST method, they use transient messages that are
not cacheable, and they keep conversational sessions between the server and
the client. These violations lead to tighter coupling between the client and the
service, and they limit interoperability and scalability of the resulting systems.

3.4.2 HTML, RDFa, Microformats, Microdata

Majority of the content on the Web is captured in the Hypertext Markup Lan-
guage (HTML [45]). For example relevant to this thesis, Web APIs are commonly
described in HTML documentation. HTML is the language of Web pages, defin-
ing how content and media should be laid out in a client’s browser. The language
has structure similar to XML, and it defines numerous tags (that would be called
elements in XML) to mark up the page’s content.

Typical structural and layout tags are <h1> for a first-level headline, and <p>

for a paragraph. HTML allows external styling to be applied to its tags, using
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an attribute called class; for example, a particular paragraph at the beginning
of an article can be marked with the class “abstract”, and the style can typeset
the paragraph in a smaller italic font, as the abstract of the article.

The class attribute in effect makes it possible to annotate the semantics of
the page’s content. This is used in microformats (discussed below) to mark up
page’s content as machine-processable data.

HTML, as a hypertext language, can also mark up links between pages, for
example like this:

<a href="http://example.com">follow this link</a>

The <a> tag with an href attribute signifies a hyperlink. HTML defines two
attributes, rel and rev, that can be used to indicate the relationships between
the page that contains the link, and the page that is linked to. For example, a
page in a collection (for example a blog entry) can mark up the links to the next
and previous pages in the same collection. With such markup, a browser can
provide a common mechanism for navigating in a collection, without the user
having to locate and click the actual link in the page. Microformats also often
make use of these two attributes.

Further, HTML defines forms, a set of tags for various input fields, along
with a mechanism for the user to submit the data they entered in the input
fields to the Web application. Forms are the primary technique for users to
perform interactions such as submitting a search query, purchasing products,
or commenting on Web stories. Forms can be seen as rich hyperlinks that not
only point to Web resources (where the data is to be submitted) but also define
what data should be submitted and what HTTP method should be used for
the submission. Effectively, without forms, the Web would be read-only, with
browsers relegated to viewing content and following hyperlinks.

Microformats are an “adaptation of semantic XHTML6 that makes it easier
to publish, index, and extract semi-structured information” [58], an approach
for annotating mainly human-oriented Web pages so that key information is
machine-readable. A microformat is mainly a collection of keywords that are
used as class names on HTML elements to indicate the type of data con-
tained by the elements, and keywords used on hyperlinks to specify relations
between resources. An HTML page with microformat annotations works in a
Web browser as any other HTML page, but it also allows programmatic ex-
traction of the contained data, regardless of the presentation structure of the
page. There are already microformats for contact information, calendar events,
ratings etc., supported by a variety of tools.7

Microformats take advantage of existing XHTML facilities such as the class
and rel attributes to mark the fragments of interest in a Web page. A microfor-
mat translates the hierarchy of HTML elements into a hierarchy of objects and
their properties. For example, a calendar microformat marks events with their
start and end times and with the event titles, and a calendaring application
that supports this microformat can then directly import the data from what
otherwise looks like a normal Web page that can be syntactically valid HTML.

To make data from a Web page available for processing, GRDDL [35] is a

6HTML in XML; originally, HTML syntax differs from the rules of XML.
7See microformats.org for examples and further information about microformats.

microformats.org
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mechanism for extracting RDF information from Web pages, particularly suit-
able for processing microformats. GRDDL defines a way for Web pages to point
to XSLT transformations that process the page and output RDF triples. To
elaborate on the above calendar microformat example, if the page includes a
GRDDL transformation pointer, the calendar data will be available to any data
browser, not only to applications that implement support for the particular
microformat.

Since microformats use simple class names to denote the semantics of the
content, they are exposed to the risk of naming conflicts when data in multiple
formats is included in a single Web page.

Microdata is a draft specification that “allows machine-readable data to be
embedded in HTML documents in an easy-to-write manner, with an unambigu-
ous parsing model.” [46] The intent of the microdata specification, in develop-
ment together with HTML5 [48], is to replace the need for ad-hoc microfor-
mats, by specifying five HTML attributes, namely itemid, itemprop, itemref,
itemscope, and itemtype, which together support a model that consists of
groups of name-value pairs, known as items. While microdata does not reuse
any of the existing HTML attributes, it still carries the risk of naming conflicts
in data properties, similarly to microformats. Also, the use of new attributes
poses a problem for validating the syntactic structure when publishing HTML
documents.

Microdata is primarily convertible into JSON structured data. [47] discusses
ways of converting microdata into RDF, which may include vocabulary-specific
rules. Potentially, also GRDDL can be used to extract RDF from microdata in
HTML documents. When microdata is standardized, it will likely be adopted to
replace the use of microformats for structured data embedded in HTML pages.

RDFa is a collection of attributes and processing rules for extending XHTML
to support RDF [97], and it constitutes an alternative to microformats for in-
cluding machine-processable data (limited to RDF in this case) in Web pages.
RDFa specifies a collection of generic XML attributes for expressing RDF data
in any markup language, and especially in HTML. RDFa shares some of its use
cases with microformats, but with different design principles: where microfor-
mats aim to be especially easy to use for Web content authors, RDFa is better
prepared for proliferation of data vocabularies.

In contrast to microformats and microdata, RDFa avoid any risk of naming
conflicts through use of XML namespaces to distinguish vocabularies, and it uses
the attributes typeof, about, rel, resource, and property (among others) to
express any RDF content. However, like microdata, RDFa also uses extension
attributes in HTML and thus can pose validation problems.

3.4.3 Protocol-specific Service Descriptions, AtomPub

Standardized types of Web resources that are amenable to machine processing,
such as search engines or online publishing systems (e.g. blogs), often provide
machine-readable descriptions in order to facilitate capability discovery and au-
tomated interactions.

Let us first illustrate such machine-readable descriptions a simple case: search
engines can be integrated in other software, for example in Web browsers in
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a conveniently located search field. OpenSearch [21] is a proposed “collection
of simple formats for the sharing of search results,” and it defines an XML-
based format for describing the interface of a search engine. With this format,
Web browsers (and other systems that integrate third-party search engines)
can learn about a new search engine simply by downloading its “OpenSearch
description document” that specifies how search queries should be formulated for
the particular engine, and what the responses will look like. In effect, browsers no
longer need search-engine-specific functionalities, and conversely, search engine
providers no longer need to make browser-specific efforts to be supported.

The situation can be generalized as follows: there is a well-known protocol
— in the case of search engines, the protocol consists of a single search oper-
ation — that can be implemented by many services. Importantly, the protocol
does not prescribe the form of resource URIs — it only specifies the types of
resources and how they interlink. To support clients, the protocol also speci-
fies a machine-readable description format so that services can provide various
types of information about themselves — in the search-engine case, a service
especially needs to say how search terms are passed to the engine, for example
as URI parameters (and how the parameters are named). The machine-readable
description format makes it possible for clients to adapt automatically to any
service, and for the services to be accessed automatically by any client.

The Atom Publishing Protocol (AtomPub, [5]) presents a more interesting
case. The protocol defines how a client can create, edit and delete resources
in collections; collections are represented as Atom feeds citeatom. The primary
use is for online publishing systems such as blogs, where the clients can add/up-
date/remove articles and related media files. Like above, AtomPub defines the
protocol along with a Service Document format that describes the service.

A typical AtomPub client is a desktop blog editor8 that allows its user to
manage their blog and write new entries with the performance and rich user
interface of a native desktop application; the user can even compose entries
offline and upload them when they connect to the internet again.

With the AtomPub Service Document, a server can advertise to the clients
what collections it hosts. The collections of a single service are further grouped
into so-called “workspaces”, but AtomPub does not provide any operations for
managing workspaces so they are not relevant to our discussion here.

For each collection, the Service Document can specify the URI where the
collection can be accessed, and the following metadata about the collection: a
title, the media types accepted as items in this collection, and a list of categories
that can be assigned to items in this collection. For example, a blogging service
(workspace) can have two collections: one for the text of the blog entries, with
possible categories such as work, link, fun etc., and a second one for pictures that
may accompany the blog posts. This way, when a user composes a blog entry
with a picture in their desktop blogging application, the application can upload
the picture in the media collection, and embed the picture’s newly assigned URI
(returned by the upload operation) in the entry text as it uploads the entry in
the main collection.

Listing 3.1, shown earlier on page 28, contains an example AtomPub Service
Document, with only a single collection for textual (Atom entry) data in it.

8For instance ecto, http://illuminex.com/ecto/

http://illuminex.com/ecto/
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3.4.4 WADL

As discussed above, specific protocols such as search or blog publishing can have
service descriptions tailored to the structure of the protocol’s resources. While
this allows the descriptions to be concise and to-the-point in what they describe,
the protocol-specific approach also causes a proliferation of service description
formats.

Having to support a plethora of service description formats to deal with
RESTful services is not a desirable situation for service registries, therefore there
are efforts for a generic RESTful service description language. Chief among them
is the Web Application Description Language (WADL [36]), a format that has
slowly gained certain traction, stronger than any other such approach that we
have seen. In this section, we give a brief overview of the main characteristics
of WADL.

The top-level concept of WADL is an application. The language defines a Web
application as “a HTTP-based application whose interactions are amenable to
machine processing”, typically “promoting re-use of the application beyond the
browser”, and “enabling composition with other Web or desktop applications”.
WADL recognizes that Web applications require semantic clarity in content
(representations) exchanged during their use.

WADL describes an application as a set of resources. For each resource,
WADL mainly captures its address, and the methods that are available on the
resource. The address of a resource is specified as a URI template, with various
types of parameters that can be filled in the URI and also in request HTTP
headers.

A resource in WADL does not have to be fully described in situ, instead the
description can refer to a reusable resource type. This way, WADL supports the
reusability of parts of service descriptions.

For every method on some resource, WADL identifies the HTTP method,
additional request parameters that extend those defined on the resource itself,
and the request and response (input and output) data formats. Interestingly,
the response types can be associated with HTTP response codes so that the
client knows what to expect depending on the result of the method execution.

Finally, WADL can even point out pieces of data (both in requests and
responses) that serve as links to other resources. This way, WADL can capture
some information about the expected hypertext structure of the application.

Since WADL aims to be a generic service description language for RESTful
services, it would be possible that if it gains adoption, formats such as AtomPub
Service Document, or OpenSearch Description, would be expressed in WADL,
for example as predefined resource types.
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3.5 Semantic Web Technologies

This thesis presents a lightweight semantic approach to automating the use of
Web services. The preceding sections of this background chapter have focused
on Web and service technologies; here we look at technologies developed to make
the Web semantic.

First, in Section 3.5.1 we describe the basis of the Semantic Web, the Re-
source Description Framework RDF. Then we touch on several ontology lan-
guages in Section 3.5.2, and in Section 3.5.3 we discuss the distinction of light-
weight and heavyweight ontologies. Finally, in Section 3.5.4, we present XS-
PARQL, a recent technology proposed for bridging the gap between the Seman-
tic Web with RDF, and data exchanges in XML.

3.5.1 Resource Description Framework RDF

Resource Description Framework (RDF [95] is a data model and a set of syntaxes
for representing statements about resources on the Web. RDF makes extensive
use of Uniform Resource Identifiers (URIs), not only for the resources that are
being described, but also for the vocabularies used to describe them.

The basic construct in RDF is a triple 〈s, p, o〉, where s is the subject of the
triple, i.e., the resource that is being talked about; o is the object of the triple,
i.e., a resource or another value to which the subject is related; and p is the
predicate of the triple, i.e., the relationship between the subject and the object.

An RDF triple object can be either a concrete resource (identified by a URI),
or a so-called blank node, which is a resource that has no identifier. A predicate
is always a concrete resource, and the object can be a concrete resource, a blank
node, or a literal value, as we will show in an example below.

Multiple RDF triples put together form an oriented graph. In RDF, graphs
are formally defined as sets of triples, which means that a single triple cannot
repeat in the graph, and that the graph need not be connected. A named graph
is a graph that has a URI identifier. Note that an RDF graph is free to contain
statements about itself, but it is not required to do so — the identifier of the
graph need not be present in the graph at all.

An RDF document is a serialization of an RDF graph in one of the avail-
able syntaxes, especially Notation 39 and Turtle (a subset Notation 3), and
RDF/XML [99]. Listing 3.4 shows an example RDF graph serialized in Turtle.

The graph in the listing talks about two separate resources, one identified
as http://example.com/serviceDescription.html#svc, and another a blank
node, written as :x.

Note that blank node names (like :x) are only meaningful within a single
RDF document — if two different RDF documents use the same blank node
name, they do not automatically refer to the same blank node.

The example users a shorthand notation for URIs, called namespace pre-
fixes. Instead of writing http://www.wsmo.org/ns/wsmo-lite#Service as the
full URI of a resource, the document declares a prefix called wl and then uses
the prefix together with the final part of the URI, i.e., wl:Service. A single
prefix can be used for multiple different resources — our example also refers to
wl:Operation. Namespace prefixes belong to RDF documents — a document

9http://www.w3.org/DesignIssues/Notation3.html

http://www.w3.org/DesignIssues/Notation3.html
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1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4

5 <http://example.com/serviceDescription.html#svc> a wl:Service ;
6 rdfs:label ”ACME Hotels” ;
7 hr:hasOperation :x .
8 :x a wl:Operation .

Listing 3.4: Example RDF graph

must define all the prefixes it uses, different documents can define prefixes dif-
ferently, and the RDF graphs represented by RDF documents are not influenced
by the choice of namespace prefixes.

Turtle also allows another special-case shorthand — one can write a instead
of http://www.w3.org/1999/02/22-rdf-syntax-ns#type (or rdf:type with
the commonly-used prefix), which is a well-known predicate that puts a resource
in a class of resources. Our example gives classes to both subjects: the first one
belongs to the class wl:Service (defined later in this thesis), and the blank
node belongs to the class wl:Operation. Effectively, the example graph talks
about a service and an operation.

Finally, apart from the two rdf:type statements, the graph also gives a
label to the service resource, and it says that the operation :x is in fact an
operation of the service. Note that in Turtle, multiple statements with the same
subject can be given without repeating the subject, instead the predicate-object
pairs are separated by semicolons. The final statement about a given subject is
always marked with a period.

In addition to the Turtle syntax (and Notation 3), which we have used in
the example, RDF/XML is an important alternative syntax for RDF graphs.
It serializes RDF statements in XML elements, and it gives the author many
options on how XML constructs can represent RDF triples. In this thesis, we
exclusively use Turtle to show RDF graphs, because it is easier to read, but
software tools commonly use RDF/XML because of the ready availability of
XML-handling libraries.

Using URIs to identify resources and relationships in RDF removes many
issues that other data formats (including XML and JSON) have with vocabulary
conflicts. In effect, two RDF graphs can be merged simply by making a union of
the two sets of triples (any triple present in both sets will only be present once
in the merged set). If the two graphs both happen to give statements about
some given subject resource, all the statements will be present in the merged
graph. While an application may recognize the merged data as inconsistent (for
instance it may be seen as a problem if two graphs give different labels to a
single service), on the RDF level, the graphs can be merged without difficulty.

Merging any graphs is an aspect in which RDF differs greatly from other
data formats such as XML and JSON, where two documents cannot be merged
generically without knowledge of the concrete application structure of the data.
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3.5.2 Ontology Languages

In this section, we briefly discuss languages for describing semantic vocabularies,
focusing on those that are directly usable with RDF. In particular, we discuss
RDF Schema (RDFS), Web Ontology Language (OWL), Rule Interchange For-
mat (RIF), and Web Service Modeling Language (WSML).

RDF Schema [98] extends RDF with simple means of defining RDF classes
and properties. RDFS can mainly express the following notions:

• Resource C is a class — it groups instances with somehow related charac-
teristics (an instance is attached to a class using the rdf:type predicate
mentioned above).

• Resource D is a subclass of a class C — all instances of D are also recog-
nized as instances of C.

• Resource P is a property — it should be used as a predicate in RDF triples.

• Resource R is a subproperty of property P — every triple that has R as
its predicate also implies a triple with the same subject and object and
with P as the predicate.

• Property P has class A as its domain — every resource that has property
P belongs to class A.

• Property P has class B as its range — every value of property P (a
resource that is the object of a triple with property P as the predicate)
belongs to class B.

In addition, RDFS defines several utility properties such as rdfs:label

for giving resources human-oriented names, and rdfs:seeAlso for referring to
somehow related resources.

Importantly, RDFS is intended for inference and not for consistency check-
ing, so the forms above will imply new knowledge rather than constraint viola-
tions. Most importantly, this difference demonstrates itself in the case of domain
and range descriptions: where one might understand a range with the meaning
that one can only use instances of class B as values of property P (for exam-
ple, the property wl:hasOperation should always point to an instance of the
class wl:Operation and it would be an error for it to point to something else),
RDFS will simply infer that if something is the value of P , it belongs to B (if
wl:hasOperation mistakenly points to an instance of wl:Service, RDFS will
infer that the instance of wl:Service is also an instance of wl:Operation).
Barring datatype clashes (outside the scope of this section, see [96]), RDF and
RDFS data cannot be inconsistent.

The Web Ontology Language OWL [82, 84] is conceptually an extension of
RDFS for greater expressivity. OWL defines sublanguages/profiles that range
in expressivity and computational complexity: In OWL 1, OWL-Lite allows ex-
pressing simple constraints and has the lowest formal complexity of the three
sublanguages, OWL-DL corresponds to Description Logics and guarantees com-
putational completeness and decidability, and OWL-Full embraces the syntacti-
cal freedom of RDF with no computational guarantees. OWL 2 defines profiles
that support different use cases: “OWL 2 EL enables polynomial time algorithms
for all the standard reasoning tasks; it is particularly suitable for applications
where very large ontologies are needed, and where expressive power can be
traded for performance guarantees. OWL 2 QL enables conjunctive queries to
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be answered in LogSpace using standard relational database technology; it is
particularly suitable for applications where relatively lightweight ontologies are
used to organize large numbers of individuals and where it is useful or neces-
sary to access the data directly via relational queries (e.g., SQL). OWL 2 RL
enables the implementation of polynomial time reasoning algorithms using rule-
extended database technologies operating directly on RDF triples; it is partic-
ularly suitable for applications where relatively lightweight ontologies are used
to organize large numbers of individuals and where it is useful or necessary to
operate directly on data in the form of RDF triples.” [84]

OWL can express all the RDFS constructs, and it adds the following, among
others:

• Class and property equivalence, resource equality and inequality, and class
disjointness (where two classes cannot share instances).

• Class intersections, unions and complements.

• Property characteristics such as being transitive, symmetric, functional
and inverse-functional, or a property being the inverse of another property.

• Cardinality constraints, expressing that some property (on instances of a
given class) must have a given minimum (or maximum) number of values.

• Local range constraints, expressing that some property (on instances of a
given class) must have values from some range class (either all the values,
or at least some of them).

• Describing ontologies, including some support for versioning and reuse.

Like RDFS, OWL is also intended for inferring new knowledge rather than
for consistency checking, but the added constructs of OWL make it possible to
detect some types of inconsistencies. For instance, an OWL ontology can express
that wl:Service and wl:Operation are disjoint classes, which means that if an
instance is inferred to belong to both classes, the data must be inconsistent.

In 2010, the W3C finalized the Rule Interchange Format RIF [104], a format
for exchanging rules among rule systems. It defines the syntax for capturing
rules, as well as their rigorous semantics, with several dialects for exchanging
logical axioms and/or rules with actions. The logics-based dialect is called “Basic
Logic Dialect” (RIF-BLD, [103]), which corresponds to definite Horn rules with
equality and a standard first-order semantics. RIF-BLD can be used to facilitate
the exchange of rules that access RDF and OWL data, and extend RDFS and
OWL ontologies.

In addition to the Web standards RDF, RDFS, OWL and RIF, we will
also mention here one research proposal for an ontology language: Web Service
Modeling Language WSML [24]. The ontology language WSML is part of the
larger WSMO framework, already mentioned in Section 2.2.2.

Like OWL, WSML also defines sublanguages (called variants) with various
levels of expressiveness: WSML-Core is the intersection of Description Logics
and Horn Logic, a low-expressivity base on which all the other variants are
built. WSML-DL largely coincides with OWL-DL. WSML-Flight and WSML-
Rule extend WSML-Core in the direction of Logic Programming, providing a
powerful rule language. Finally, WSML-Full is an umbrella that combines the
DL branch with the Rule branch, but without a complete specification for its
semantics.
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WSML is in many ways similar to (and interoperable with) the Web stan-
dards RDFS and OWL10, and WSML rules can potentially be exchanged using
RIF. In contrast to the Web standards, however, WSML has a human-readable
syntax that is tailored for direct authoring and reading of ontologies and rules.
As the contributions of this thesis are not tied to any particular rule language
or expressivity layer beyond simple subclass relationships, the main considera-
tion for the rule language used in our examples is its readability. Therefore, this
thesis, and especially Section 4.5, uses WSML.

3.5.3 Lightweight Ontologies

One of the aims of our work is that the resulting ontologies should be lightweight.
In this section, we discuss what it means for ontologies to be lightweight. We use
a simple one-dimensional spectrum of the level of detail in ontologies, adapted
here in Figure 3.5 from a drawing by McGuinness [76].
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Figure 3.5: An ontology spectrum (adapted from [76])

On the left-hand side of the dashed red line there are the simpler, less for-
mal ways to specify terms in a domain of discourse. Catalogs and glossaries
define finite lists of terms, with varying degrees of ambiguity in their interpre-
tation. Thesauri and taxonomies provide unambiguous, yet very weak, relations
between the defined terms: for example, a thesaurus may specify some terms
to be synonymous, or narrower-than/wider-than one another, and taxonomies
define hierarchies of terms without a strict is-a relationship. For illustration, in
the eCl@ss classification of products and services11, the category “Entertain-
ment electronics (maintenance, inspection)” is a subcategory of “Entertainment
electronics”, even though the task of maintenance is clearly not a piece of elec-
tronics. Such informal is-a relationships are useful when categorizing products
and services, but they limit the inferences possible in a knowledge management
system.

On the right-hand side of the dashed red line, the figure has ontologies with
increasing levels of expressivity, starting with formal and strict is-a hierarchies
and adding the notions of instances, properties, value restrictions and further
logical axioms. McGuinness also defines requirements on what should be consid-
ered a formal ontology, and only specifications that fall on the right-hand side
of the red line satisfy these requirements.

Ontologies close to the red line are lightweight, with limited expressivity and
very efficient reasoning techniques. The far-right end of the spectrum contains

10For details on compliance of WSML with W3C languages see [23].
11eCl@ss Standardized Material and Service Classification, http://eclass-online.com/,

version 5.0.1

http://eclass-online.com/
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ontologies that can be very detailed and powerful specifications of their respec-
tive domains, but very complex reasoning algorithms are required in order to
use all the intended inferences.

The level of expressivity does not only affect the complexity of reasoning
algorithms; it also influences the ease of use and reuse. A lightweight ontology
is easier to learn and it imposes fewer constraints on the data and other on-
tologies with which it might be combined. Altogether, lightweight ontologies
generally have a lower barrier of adoption than more heavyweight ontologies
with a comparable purpose. In the words of Hepp [40], there is an “expressivity-
community-size frontier” that severely limits the expected number of users for
expressive and large ontologies.

3.5.4 XSPARQL

There are two machine-oriented data representation technologies standardized
specifically for the Web: XML and RDF. XML is very popular as a data ex-
change format, because its hierarchical structure maps very well into program-
ming language structures and database records; on the other hand, RDF is a
less constrained graph data model designed for freely combining and querying
data from diverse sources. These qualities make RDF better-suitable than XML
for the Semantic Web.

XML and RDF have coexisted for nearly a decade now, and until recently,
there has been a gap between XML and RDF because there were no tools
that could gracefully handle transformations between the two technologies. The
standardization of the RDF query language SPARQL [114] and of the XML
query language XQuery [143] has spurred the development of XSPARQL [92],
a combination of these two query languages that natively supports both XML
and RDF, and thus enables relatively easy transformations between the two
data formats.

XQuery is a functional programming language for querying and creating
XML documents. A single query can reach into multiple documents (using
XPath [142] expressions) and produce a single XML document as its output.
Due to the important role of literal data (numbers, strings etc.) in XML, XQuery
has a powerful operator and function library [145] for manipulating such data.

SPARQL is a declarative query language for RDF data; a single query can
combine multiple RDF data sources and produce either a single yes/no answer,
a list of variable bindings, or a new RDF graph. SPARQL provides only limited
means for manipulating literal data, which is often seen as a drawback.

XSPARQL can process inputs in XML (using XPath expressions) and in
RDF (using SPARQL graph patterns). Literal data from RDF is converted into
the XQuery/XPath data model [144], which allows it to be subjected to the full
power of the XQuery operator and function library. As the output, an XSPARQL
query can produce either an XML document or an RDF graph.

In summary, XSPARQL is particularly suitable for transforming between
XML and RDF (as discussed in Section 5.1.5) and for combining XML and
RDF inputs. In the context of this thesis, XSPARQL is especially useful for the
transformations between XML as Web service communication format, and RDF
as the data model of semantic clients. This thesis contains example XSPARQL
queries for such transformations between XML and RDF in Section 5.1.5.



48 Chapter 3. Background



Part II

Semantic Web Service
Description Languages

49





Chapter 4

Lightweight Service
Ontology

“A little semantics goes a long way.” — Hendler’s Law, 1996

In the preceding chapters, we have shown the need for Web service usage au-
tomation, and motivation for lightweight semantic Web service descriptions,
supporting both WS–∗ and RESTful Web services. Here, we define a service
ontology which satisfies that need, building on a simple yet sufficient model of
Web services.

In Section 4.1, we analyze relevant service modeling and description specifi-
cations that underlie our WSMO-Lite service model. In Section 4.2, we analyze
the requirements that need to be fulfilled by an ontology for semantic descrip-
tions of Web services. We define the concepts of the ontology in Section 4.3, and
the RDFS encoding in Section 4.4. In Section 4.5, we discuss options for captur-
ing logical expressions that are beyond the expressivity of RDFS and OWL, and
finally in Section 4.6 we show the service model in relation to the underlying
service description technologies, which are discussed in the following chapters.

4.1 Web Service Model

Our service model is derived from relevant work on service modeling and de-
scription, mainly from the standard for Reference Model for SOA and from
WSDL, which are detailed in Sections 3.1 and 3.3.2. These specifications are
part of the WS–∗ family of standards, but Chapter 6 clearly demonstrates that
our service model is nevertheless appropriate for RESTful services as well.

The OASIS consortium’s industry-standard Reference Model for Service Ori-
ented Architecture (SOA RM [100]) investigates a number of aspects of services;
the top-level six (shown in Figure 3.1 on page 26) are Service description1, Visi-
bility, Execution context, Real-world effect, Contract and policy, and Interaction.
A service in SOA is generally not a single physical artifact, instead it is a con-
cept useful for manageability. From the point of view of a client, the physical

1In the text we emphasize with italics the terms defined by the SOA RM.
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Figure 4.1: Subset of OASIS SOA RM relevant for the service ontology

artifacts of a service are its network location (part of the Visibility aspect) and
the service description.

Service description is key to automation, because a client only has service
descriptions to guide it in selecting and using the available Web services. Fig-
ure 4.1 (a simplified combination of Fig. 3.2 and Fig. 3.3) details the parts of
the SOA RM that must be captured in a machine-readable description: a ser-
vice has a certain functionality, which implements the service capabilities that
achieve the real-world effect ; it may have additional constraints (contracts and
policies); it is reachable (commonly through a computer network, at a given
location that gives the service visibility); and it has a service interface, made
up of an information model and a behavior model, both involved in interactions
between the service and its clients.

The information model of a service interface characterizes the information
that may be exchanged with the service. It specifies the semantics (i.e., the
meaning) of the data, and its structure and form. The behavior model describes
the actions (operations) that may be invoked on the service, and the process
that defines the possible order(s) in which the actions make sense. In the words
of the SOA RM, “the process model characterizes the temporal relationships
and temporal properties of actions and events associated with interacting with
the service.” The interaction side of the service is the most detailed part of
service description in SOA RM because it represents the majority of the service’s
interface for use by clients.

For the purpose of tool support and automation of Web service use, a ser-
vice description must capture the mentioned aspects of the service. Information
about message structures, communication protocols and message exchange pat-
terns, and physical service access points (service reachability), is already part
of technical descriptions such as WSDL; in this work we do not study the se-
mantics of these underlying technical descriptions. In our case, for automation
using semantics, we want to represent the semantics of the remaining aspects
not covered in the underlying technical descriptions.

Inspired by the distinctions made by Sheth [108], we group the remaining
aspects of SOA RM service description into four orthogonal parts:
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(a) Structural view with Functional, Nonfunctional, Behavioral and
Information semantics

(b) Conceptual view

Figure 4.2: WSMO-Lite Web service description model

• Functional descriptions specifies service functionality, that is, what a ser-
vice can offer to its clients when it is invoked.

• Nonfunctional description defines any contract and policy parameters of a
service, or, in other words, incidental details specific to the implementation
or running environment of the service.

• Behavioral model specifies the actions and the process (in other words,
the operations and their ordering) that a client needs to follow when con-
suming a service’s functionality.

• Information model defines the input, output and fault messages of the
actions.

In effect, there are four types of semantics that must be covered by a
service ontology: functional, nonfunctional, behavioral and information
semantics.

Figure 4.2 shows two different views of the service description model, ex-
tracted from the above analysis. Part (a) of the figure shows the structure of
a service description, separating the non-semantic service structure from the
semantic aspects in the annotations on top. Part (b) of the figure shows the
concepts that make up the service model, along with the relationships between
them.

The non-semantic service structure can be seen as a straightforward simpli-
fication of the structure of WSDL. It starts with the Web service, which offers a
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number of operations. Every operation has an input and/or an output message,
and possibly also some fault messages2.

On the semantic level above this structure, functional and nonfunctional
semantics are directly properties of a service. Behavioral semantics tie to service
actions/operations. Finally, information semantics tie to the data that a service
communicates with — to the input, output and fault messages of the operations.

The structure of this model can be seen as a high-level abstraction of the
component structure of WSDL, and we detail a concrete mapping from WSDL
into our model in Chapter 5. Still, our model applies equally well to REST-
ful Web services; Chapter 6 details the mapping between sets of hypermedia
resources (the structure of RESTful Web services) and sets of operations (our
service model).

4.2 Requirements for a Service Ontology

In accordance with most ontology development methodologies to date (cf. [34,
115]), an ontology should have a clear goal, domain and scope, which together
shape the requirements that the ontology must fulfill.

The goal of our service ontology is to enable automation of discovery and
use of Web services. The domain is the service model described in Section 4.1,
which covers both WS–∗ and RESTful Web services. The scope of the service
ontology is modeling the four types of semantics (functional, nonfunctional,
behavioral and information) to the extent necessary to support automation of
the tasks involved in discovery and use of Web services. Additionally, because
Web services can cover any kinds of business functionalities, the service ontology
must be able to make use of domain-specific ontologies.

In the subsections below, we list requirements that come from the domain
(service model), the intended application of the ontology (SWS automation),
and from the environment where the ontology will be used. The last subsection
summarizes the requirements in a single list.

4.2.1 Domain Requirements

An ontology is a conceptualization of a domain. Therefore, the domain modeled
by the ontology is the first source of requirements; it defines what terms should
be present in the ontology.

The service model described in Section 4.1 is a common view on Web services,
whether they be RESTful or use the WS–∗ technologies. The existence of such a
common view allows us to treat both kinds of Web services in the same way for
most of the automation tasks performed by a Semantic Execution Environment
(SEE).

In our work, we do not attempt to unite the non-semantic technologies of
the two different kinds of Web services. Consequently, the technical aspects
are out of scope of the service ontology, which serves as a bridge between the
non-semantic Web service descriptions (WSDL for WS–∗ services, links and
forms for RESTful services), and the functional, nonfunctional, behavioral and
information semantics which provide a unified definition of the available Web
services.

2Operation message exchange patterns are discussed in Section 3.3.2 (Page 32).



Section 4.2. Requirements for a Service Ontology 55

Therefore, the service ontology needs to cover the following terms from our
service model:

• Web service

• operation

• input message

• output message

• fault messages (in and out)

4.2.2 Application Requirements

An ontology supports an application; in our case the application is a Semantic
Execution Environment that automates some tasks involved in the discovery and
use of Web services. The application has two major parts—its functionality and
its users—both of which provide requirements on the ontology. The functionality
is to automate the various tasks, and the users are Web service designers, SEE
implementors, and the clients. In this section, we first analyze the functionality
requirements, and then we follow with the user requirements.

Functionality Requirements

In Section 2.1, we enumerated the Web service usage tasks that can be (partially
or fully) automated with suitable machine-readable descriptions. In Section 4.1,
we distinguish four aspects of Web service descriptions: functional and nonfunc-
tional descriptions, behavior and information model. They should be expressed
semantically within our service ontology.

The different automation tasks have varying requirements on the extent of
semantic descriptions that should support automation. In the following list, we
go through the service usage tasks and discuss what semantic annotations are
necessary for each task — these requirements stem from our definitions of the
various tasks in Section 2.1.

• Service discovery finds services that can functionally satisfy a given goal.
Therefore, functional semantics must be expressible in our service ontol-
ogy. Note that this is an intentionally narrow view of service discovery,
which helps us distinguish it from the other tasks.

• Offer discovery communicates with a discovered service and retrieves in-
formation about any available offers. Offer discovery deals with the data,
therefore it requires information semantics; and it needs to invoke the
service’s operations in the appropriate sequence, therefore it needs behav-
ioral semantics. Offer discovery incorporates the operation invocation task
described below.

• Ranking and filtering for service selection can use any available informa-
tion, but does not strictly require any. However, most common ranking/fil-
tering parameters fall into the category of nonfunctional semantics, which
is therefore marked as required.

• Composition combines functional problem decomposition with service dis-
covery and optionally also ranking/filtering, therefore it requires func-
tional semantics and can benefit from any other information.
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• Operation invocation exchanges messages with the service, therefore it
needs information semantics to handle the message data.

• Service invocation attempts to execute the selected service to achieve the
given goal; therefore it needs behavioral semantics in order to sequence
the necessary operation invocations appropriately. Naturally, service invo-
cation also incorporates operation invocation.

Table 4.1 summarizes what descriptions are required (•) or useful but op-
tional (◦) for the various tasks.

Service Task F N B I

Service discovery •
Offer discovery • •
Ranking and filtering ◦ • ◦ ◦
Composition • ◦ ◦ ◦
Operation invocation •
Service invocation •

Table 4.1: Service usage tasks and the necessary semantics (Functional, Non-
functional, Behavioral and Information)

We can see that in order to be able to automate all the mentioned tasks,
which is the intended application functionality of our service ontology, all four
kinds of service semantics are required. The ontology must support the use of
domain ontologies for expressing the concrete semantics of particular services,
and it must provide a mechanism for connecting these domain ontologies with
the service model. The following list summarizes the application functionality
requirements, in terms of what must be supported by the service ontology:

• functional semantics

• nonfunctional semantics

• behavioral semantics

• information semantics

• plugging in domain ontologies to express the concrete semantics

User Requirements

There are three types of intended users of the service ontology and the associated
SEE application: service designers, SEE implementors, and clients. Here, we
analyze these types of user with the aim of identifying the requirements they
have on the service ontology.

Service designers create Web services and provide their semantic descrip-
tions. In current practice, the semantic descriptions are often added after a
service is created and running, and may even be added by third parties inde-
pendent from the service provider (for instance, in the evaluation of this thesis,
we add semantic annotations to the descriptions of existing public Web services
for the purposes of demonstrating the use of our service ontology). Neverthe-
less, the distinction between the entity who provides a service and the one who
provides the semantic description is immaterial to this thesis, therefore we use
the simple and understandable term “service designer” for the combined role.
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Service designers need to create the technical description (e.g. WSDL) along
with the semantic one. This technical description does not express the semantics
of the service, but it does describe the structure, corresponding to the service
model (Section 4.1). The semantic description can either be embedded in this
technical description (annotating it with semantic information, for instance us-
ing SAWSDL, which is the basis for our work), or it can be expressed externally.
However, since the service ontology encompasses the service model, an exter-
nal semantic description would duplicate some information from the technical
description, introducing space for inconsistencies, especially when the system
evolves and the descriptions need to be updated. Therefore we will focus on
embedding the semantic descriptions within the technical ones. Naturally, Web
service descriptions with added semantic annotations should not break any such
uses of the technical descriptions that do not take the semantic annotations into
account.

The service designers’ requirements, both supported by SAWSDL, can be
summarized in the following list:

• The service ontology must be embeddable in the selected technical Web
service description technologies.

• The semantic annotations must use backwards-compatible extension mech-
anisms in the technical description languages.

The implementors create a SEE, the system that uses the semantic de-
scriptions in the process of (semi)automatically fulfilling a client’s goal. A SEE
is generally decomposed into a set of components that implement the various
automation tasks, as described in Section 2.1. The different tasks require differ-
ent parts of the semantic descriptions, therefore the four parts of the semantic
descriptions (functional, nonfunctional, behavioral and information semantics)
should be easily separable from each other. In other words, the service ontol-
ogy should not introduce unnecessary dependencies between its components,
resulting in the following requirement:

• The four types of semantics should be expressible independently.

The clients use a SEE to find and use Web services. In order for the SEE to
be able to understand and fulfill the client’s goal, the goal must be formulated
in a machine-processable form. The client may formulate the goal manually or
using some end-user tools; and a goal may use any ontologies available to the
client. Nevertheless, the client may want to use the ontologies referenced in the
descriptions of the available Web services, therefore in order to enable clients
to easily find these ontologies, we can formulate the last user requirement as
follows:

• The service ontology should not introduce unnecessary indirections be-
tween the underlying technical descriptions and the domain ontologies
used for the semantic annotations.

4.2.3 Environmental Requirements

Beside the domain and the application intended for our ontology, we also need
to consider the context in which the ontology is intended to be used. The con-
text has two major aspects—the pre-existing SWS ontologies and the runtime
environment of our concrete SEE implementation.
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Semantic Web service automation is already addressed by frameworks such
as WSMO and OWL-S. These frameworks are by design detached and indepen-
dent from the underlying Web service technologies, and they are complex. The
preceding section already addresses the first concern with the requirement that
our semantic descriptions must be done as annotations of existing Web service
description technologies. The second concern, the complexity of the existing ap-
proaches, can be viewed from two angles—the complexity for the users to learn
the ontology (also addressed in the preceding section), and the complexity of
the reasoning algorithms required to work with the ontology.

Part of the reasoning complexity when working with ontologies stems from
axioms that enforce consistency constraints, and axioms that infer knowledge
implied by the data. Typical axioms of these types are, respectively, class dis-
jointness, and the domains and ranges of properties. The service model part of
our ontology is based on underlying technical descriptions such as WSDL, which
generally have strong validation support. Relying on this level of validation, we
can assume that instances of the service ontology will be created by automatic
mapping from valid semantically annotated technical descriptions (as described
in Chapters 5 and 6). Therefore, the ontology need not formalize all the con-
straints that the service model implies, and it can avoid using higher levels of
expressivity, with the corresponding reasoning complexity. This becomes the
final requirement:

• The service ontology should not formalize constraints that are guaranteed
to be satisfied by data generated from valid underlying technical descrip-
tions.

For example, the ontology must have terms for services and operations (com-
ing from the service model), and a property that ties services to the operations
they contain, but it need not express the constraints that the class of services
is disjoint from the class of operations (no service is an operation); and that a
service can only contain operations, and not other services.

4.2.4 Summary of the Requirements

The following list summarizes the requirements we put on our service ontology
and on the knowledge representation formalization used to encode the ontology.

1. Domain requirements:

(a) The service ontology must cover the following concepts: Web service,
operation, input message, output message, fault messages.

2. Application requirements:

(a) The service ontology must support the expression of the functional,
nonfunctional, behavioral and information semantics of Web services.

(b) The service ontology must allow plugging in domain ontologies to
express the concrete semantics.

(c) The service ontology must be embeddable in the selected technical
Web service description technologies.
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(d) The semantic annotations must use backwards-compatible extension
mechanisms in the technical description languages.

(e) The four types of semantics should be expressible independently.

(f) The service ontology should not introduce unnecessary indirections
between the underlying technical descriptions and the domain on-
tologies used for the semantic annotations.

3. Environment requirements:

(a) The service ontology should not formalize constraints that are guar-
anteed to be satisfied by data generated from valid underlying tech-
nical descriptions.

In the following sections, we identify these requirements as 1a, 2a . . . 2f, 3a.

4.3 Service Ontology Conceptualization

In this section, we present the concrete concepts that comprise our ontology,
along with the relationships between these concepts. We start by listing the
concepts that capture the service model from Section 4.1, then we present the
concepts of the various kinds of service semantics, and finally we define the
pointers from the components of the service model to the semantics. Section 4.4
then presents the ontology as captured in RDF and RDFS.

4.3.1 Service Model

The service model, discussed in Section 4.1 and illustrated in Figure 4.2, repre-
sents the basic structure of Web services. It serves as a common representation of
the underlying technical descriptions, parsed in terms of this model for process-
ing in a SEE. Chapters 5 and 6 describe the mapping into our service ontology
from WSDL and from the various description technologies for RESTful services.

Our service model is rooted in the concept of Service. While some technolo-
gies, such as WSDL, abstract the interface of a service from the service itself, so
that the interface definition is reusable between multiple services, in our service
model the interface would only constitute an indirection between a service and
its semantic annotations, with no added value. Therefore, our service model
does not separate the interface from the service.

A Web service is a collection of operations. This brings the concept Oper-
ation and the relation has operation linking a service to its operations. Every
useful service has at least one operation, since the clients interact with services
by invoking their operations, and hence, no client could use a service without
operations.

Operations have input and output messages (with “inputs” and “outputs”
viewed from the side of the service), and potentially input and output faults
as well. Which of these messages should be present depends on the operation’s
message exchange pattern3: the most common one is request-response, where an
operation has a single input (request) message followed at run-time either by a

3See Section 3.3.2 (p. 32) for a description of operation message exchange patterns in
WSDL.
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single output (response) message or by an output fault. Some advanced message
exchange patterns can also include input faults (faults going from the client to
the service), as discussed for instance in [134, 80].

Messages are pieces of data; the data structure or semantics may be indepen-
dent of whether the message is used as an input, output, or fault message. For
instance, a product information document can be the input of a catalog item up-
date operation, and the output of a product detail listing operation. Therefore,
we model the messages with the concept Message, and we have four different
relations between an operation and its messages, namely has input message, has
output message, has input fault, has output fault.

4.3.2 Service Semantics

Informally, the four types of service semantics are represented in our service
ontology as follows:

• Information semantics are represented using domain ontologies, which are
also involved in the descriptions of the other types of semantics.

• Functional semantics are represented as capabilities and/or functionality
classifications. A capability defines preconditions which must hold in a
state before the client can invoke the service, and effects which hold in a
state after the service invocation. Functionality classifications define the
service functionality using some classification ontology (i.e., a hierarchy of
categories).4

• Nonfunctional semantics are represented using an ontology that semanti-
cally captures some policy or other nonfunctional properties.

• Behavioral semantics are represented by annotating the service operations
with functional descriptions, i.e., capabilities and/or functionality classi-
fications.

We formalize these terms below. Mainly, we define ontology, which is the fun-
damental building block for all types of semantic descriptions; our definition is
only as specific as necessary to capture core ontology elements needed for the
purpose of this work, but it is also general enough for us to be able to plug in
various knowledge representation languages, such as RDFS, OWL, WSML or
RIF (see Section 3.5.2, as appropriate in any particular system.

Further, we formalize classification and capability, which serve for functional
description of services and operations. The formalizations allow us to be explicit
about the terms we define, and they are also useful for defining algorithms that
process WSMO-Lite descriptions, such as the ones shown in Chapter 7 of this
thesis.

Definition 4.1 (Ontology) An ontology Ω is a four-tuple

Ω = (C,R,E, I)

4The distinction of capabilities and categories is the same that is made by Sycara et al. [117]
between “explicit capability representation” (using taxonomies) and “implicit capability rep-
resentation” through preconditions and effects.
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where C,R,E, I are sets that, in turn, denote classes (unary predicates), rela-
tions (binary and higher-arity predicates), explicit facts — instances of classes
and relations (extensional definition), and axioms (intensional definition) that
describe how instances are inferred.

A particular axiom common in ontologies is the subclass relationship between
two given classes c1 and c2: if c1 is subclass of c2 (written as c1 ⊆ c2), every
instance of c1 is also an instance of c2. In general, the subclass relationship forms
a partial order on the set of classes (it is a transitive, reflexive and antisymmetric
binary relation). To indicate that an ontology contains a subclass axiom between
the given classes c1 and c2, we write (c1 ⊆ c2) ∈ I. Along with the subclass
relationship, ontologies may also contain a subrelation relationship (r1 ⊆ r2),
defined analogously.

Definition 4.2 (classification) A classification ΩC(c0) = (C,R,E, I) is an ontol-
ogy whose classes (members of C) represent categories of things. Classification
categories form a subclass (subcategory) hierarchy5 with a single root c0, i.e.,
every class in the ontology is either directly a subclass of c0 (as captured by
the subclass axioms within I), or it is a subclass by transitivity through a finite
sequence of other classes:

∀c ∈ C : (c ⊆ c0) ∈ I ∨
∃c1, . . . , cn ∈ C : ∀i ∈ {0, . . . , n− 1} : (ci+1 ⊆ ci) ∈ I ∧

(c ⊆ cn) ∈ I

For the purposes of describing the different kinds of service semantics, we
distinguish several sub-types of ontologies: an information model ontology (an
ontology used as an information model in a service description) is denoted as
ΩI ≡ Ω; a functionality classification ontology with root c0 ∈ C (whose classes
form a taxonomy of service functionalities), denoted as ΩF (c0) ≡ ΩC(c0); and
an ontology for nonfunctional semantics as ΩN ≡ Ω, whose instances (members
of E) are concrete nonfunctional descriptions.

Definition 4.3 (capability) A capability is a three-tuple

K = (Σ, φpre , φeff )

Σ ⊆ V ∪ C ∪R ∪ E

where K (kappa) represents the capability, Σ is a set of identifiers of elements
from C,R,E of some ontology ΩI complemented with a set of variable names V ;
φpre is a precondition which must hold in a state before the service (or operation)
can be invoked, and φeff is the effect, an expression which is expected to hold
in a state after the successful invocation. Preconditions and effects are defined
as logical statements over members of Σ.

5Note that it may also be practical in some systems to use less-formal SKOS [111] concept
schemes with hierarchies of broader and narrower concepts: the SKOS narrowerTransitive
property would replace the subclass axiom ⊆, and a SKOS top concept would serve the
function of the classification root.
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4.3.3 Semantic Annotations of the Service Model

The semantic concepts defined in the preceding section are used to express
semantics of concrete services. The resulting semantic descriptions are used
to annotate the underlying non-semantic descriptions (such as WSDL) using
the standard SAWSDL properties model reference, lifting schema mapping and
lowering schema mapping.

A model reference can be used on any component in the service model to
point to the component’s semantics. In WSMO-Lite, a model reference on a
service can point to a description of the service’s functional and nonfunctional
semantics; a model reference on an operation points to the operation’s part
of the behavioral semantics description; and a model reference on a message
points to the message’s counterpart(s) in the service’s information semantics
ontology. Multiple values of a model reference on a single component all apply to
the component; for example, a service can have some nonfunctional properties,
pointers to functionality categories, and preconditions and effects which together
make up the capability of the service. Each concrete value is always identified
with a URI.

The lifting and lowering schema mapping properties are used to associate
messages with appropriate transformations between the underlying technical
format such as XML and a semantic knowledge representation format such as
RDF. Both properties take as values the URIs of documents that define the
lifting or lowering transformations. In the lifting and lowering schema mapping
properties, multiple values specify alternative transformations. The client is free
to choose the alternative it will use, likely depending on what transformation
languages it supports.

Table 4.2 formalizes the content of the annotations on our service model.
The first column specifies the service model component that is being anno-
tated, the second column specifies the annotation property (model reference,
lifting or lowering schema mapping), and the third column specifies what value
the annotation can take. The fourth column (Context) shows where the value
comes from, using the definitions from Section 4.3.2, and finally, the fifth column
(Type) shows which of the four types of semantics this annotation describes:
Functional (F), Nonfunctional (N), Behavioral (B) and Information semantics
(I).

The values of the lifting and lowering schema mapping properties are formal-
ized as f(data) → X and g(X) → data, where X ⊆ E represents a set of data
instances of some information model ontology ΩI . The functions f and g are
transformations between sets of ontological instances (X) and their representa-
tions in the underlying technical format, denoted as data. We do not constrain
the underlying technical formats and the form of the transformation functions,
therefore, the terms f, g and data are not formalized any further.

4.4 The Service Ontology in RDFS

In the preceding section, we discuss the concepts present in our service on-
tology. Here, we materialize the ontology in the most basic Web ontology lan-
guage, RDFS [98]. Listing 4.1 presents the ontology, serialized in Turtle (cf. Sec-
tion 3.5.1) syntax. Figure 4.3 shows the ontology in a graph form, where the
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Svc. model Annotation type / value Context Type

Service mref φpre or φeff K = (Σ, φpre , φeff ) F

Service mref x ∈ C ΩF (c0) = (C,R,E, I) F

Service mref x ∈ E ΩN = (C,R,E, I) N

Operation mref φpre or φeff K = (Σ, φpre , φeff ) B

Operation mref x ∈ C ΩF (c0) = (C,R,E, I) B

Message mref x ∈ C ∪R ΩI = (C,R,E, I) I

Message lift f(data)→ X ⊆ E ΩI = (C,R,E, I) I

Message lower g(X ⊆ E)→ data ΩI = (C,R,E, I) I

Table 4.2: Service model annotations with SAWSDL properties

Figure 4.3: The structure and use of our service ontology, annotating the service
model from Fig. 4.2(b)

centrally-located components of the service model are annotated with pointers
to domain-specific semantic descriptions that fit the service semantics classes
defined in WSMO-Lite.

In the remainder of this section, we define each of the classes and proper-
ties present in the ontology. In the interest of simplicity of the RDF form of
actual concrete semantic service descriptions, the classes for expressing service
semantics are not a straightforward implementation of the formal terms (such as
classification, capability, or ontology for nonfunctional semantics). We discuss
below some of the considerations that led to the proposed form of the ontology
classes.

Lines 2–6 introduce the namespace prefixes used in the listing. The na-
mespace (and location) for our service ontology is http://www.wsmo.org/ns/

wsmo-lite#, and its namespace prefix is wl.6

Lines 9–26 contain the RDFS classes and properties for the service model
(Section 4.3.1), lines 29–31 are the SAWSDL properties used for annotating

6Section 4.6 discusses the relationship between the ontology and the concrete Web service
description mechanisms SAWSDL and MicroWSMO shown in Chapters 5 and 6.

http://www.wsmo.org/ns/wsmo-lite#
http://www.wsmo.org/ns/wsmo-lite#
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1 # namespace declarations (this is a comment)
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
5 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
6 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
7

8 # service model classes and properties
9 wl:Service a rdfs:Class .

10 wl:hasOperation a rdf:Property ;
11 rdfs:domain wl:Service ;
12 rdfs:range wl:Operation .
13 wl:Operation a rdfs:Class .
14 wl:hasInputMessage a rdf:Property ;
15 rdfs:domain wl:Operation ;
16 rdfs:range wl:Message .
17 wl:hasOutputMessage a rdf:Property ;
18 rdfs:domain wl:Operation ;
19 rdfs:range wl:Message .
20 wl:hasInputFault a rdf:Property ;
21 rdfs:domain wl:Operation ;
22 rdfs:range wl:Message .
23 wl:hasOutputFault a rdf:Property ;
24 rdfs:domain wl:Operation ;
25 rdfs:range wl:Message .
26 wl:Message a rdfs:Class .
27

28 # SAWSDL properties (repeated here for completeness)
29 sawsdl:modelReference a rdf:Property .
30 sawsdl:liftingSchemaMapping a rdf:Property .
31 sawsdl:loweringSchemaMapping a rdf:Property .
32

33 # classes for expressing service semantics
34 wl:Ontology a rdfs:Class ;
35 rdfs:subClassOf owl:Ontology .
36 wl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .
37 wl:NonfunctionalParameter a rdfs:Class .
38 wl:Condition a rdfs:Class .
39 wl:Effect a rdfs:Class .

Listing 4.1: Service Ontology, captured in Turtle syntax
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service descriptions (Section 4.3.3), and lines 34–39 contain classes that capture
the various kinds of service semantics (Section 4.3.2). Below, we describe all the
classes and properties; examples are shown in the following chapters.

wl:Service (line 9) is a class of Web services, the cornerstone of the service
model. Note again that instances of the service model classes are not expected
to be authored directly; instead, the underlying technical descriptions are parsed
in terms of this ontology for processing in a SEE, as described in Chapters 5
and 6.

wl:hasOperation (lines 10–12) is a property that links services with their op-
erations.

wl:Operation (line 13) is a class of Web service operations. Every operation
belongs to a service, and it has at least one message (see below).

wl:hasInputMessage, wl:hasOutputMessage (lines 14–19) are properties that
link Web service operations with the messages that are exchanged during oper-
ation invocation.

wl:hasInputFault, wl:hasOutputFault (lines 20–25) are properties that link
Web service operations with the faults that may occur during operation invo-
cation.

wl:Message (line 26) is a class whose instances represent messages exchanged
by Web services and their clients. In WSDL, a message is associated with an
XML schema definition of its structure, but in general, our service model here
simply needs to represent the presence of a message, as its structure is only
relevant when processing the lifting or lowering transformations.

SAWSDL properties (lines 29–31) are shown here for completeness; they
are defined in the RDF mapping section7 of the SAWSDL specification.

wl:Ontology (lines 34–35) is a class that serves to mark an information model
ontology ΩI . Similarly to owl:Ontology from the standard Web Ontology Lan-
guage OWL [82], wl:Ontology allows for meta-data such as comments, version
control and inclusion of other ontologies. wl:Ontology is a subclass of owl:On-
tology, restricted only to ontologies intended to capture a service information
model, as opposed to other kinds of ontologies.8

The class wl:Ontology can be used by tools for authoring semantic service
descriptions, for instance to primarily suggest explicitly-marked information on-
tologies when annotating data schemas.

7http://www.w3.org/TR/sawsdl/#rdfmapping
8We have not investigated the possibility that all ontologies would be potentially useful as

service information models, in which case, wl:Ontology would be equal to owl:Ontology.

http://www.w3.org/TR/sawsdl/#rdfmapping
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wl:FunctionalClassificationRoot (line 36) is a class that marks the roots of
service functionality classifications. In other words, for every ΩF (c0), the root
c0 is an instance of this class. All subclasses of c0 are included in the particular
classification.

Instead of marking the root class, it would be possible to mark the whole
containing ontology as a classification, following Definition 4.2. However, in Se-
mantic Web languages, ontology elements are only weakly tied to their contain-
ing ontologies. It is much easier to check that a class is a subclass of a functional
classification root (the root being a class that is an instance of wl:Functional-
ClassificationRoot) rather than checking that a class is defined by a classification
ontology. An annotation tool can simply suggest all functional classification root
classes and their subclasses when creating functional annotations.

wl:NonfunctionalParameter (line 37) is a class of concrete, domain-specific
nonfunctional parameters. For a particular ontology of nonfunctional semantics
ΩN , its instances (members of E) would be instances of this class.9 As above, we
mark concrete nonfunctional parameters rather than the containing ontologies,
for the same reasons.

wl:Condition, wl:Effect (lines 38–39) together form a capability in a functional
annotation. Instances of these classes are expected to contain some logical ex-
pressions. The logical expression of a precondition should be satisfied before
a service or an operation is invoked, and the logical expression of an effect is
expected to hold after the service or the operation succeeds. In common with
OWL-S, the WSMO-Lite service ontology does not specify the concrete language
for the logical expressions, or their processing. Both WSMO-Lite and OWL-S
allow logical expressions to be specified in any suitable language, such as RIF,
WSML, SWRL [44] and KIF [60], and embedded in RDF semantic descriptions
as literals. To show a concrete example, Section 4.5 below defines the processing
of preconditions and effects specified using the language WSML.

The precondition and the effect implicitly make up a capability whose set Σ
of terms and variables can be deduced automatically by inspecting the logical
expressions. We do not model the capability itself in the RDF ontology, as as it
would be an unnecessary indirection between the service (or operation) and its
capability’s precondition and effect.

In order to create or reuse domain-specific service ontologies on top of the
presented Service Ontology, any ontology language with an RDF syntax can be
used. This openness preserves the choice of language expressivity according to
domain-specific requirements.

9In our service ontology, we place no further restrictions on nonfunctional parameters;
research in this area, which is out of scope of this thesis, has not yet converged on a common
set of properties that nonfunctional parameters should have.
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4.5 Using WSML Logical Expressions in Service
Capabilities

The service ontology does not prescribe any concrete language for capturing
the logical expressions in the preconditions and effects that make up service or
operation capability descriptions, nor does it specify any concrete evaluation
environment for them. In this section, we specify how the language WSML [24,
136] can be used to capture the preconditions and effects of Web services, and
how they are to be evaluated.

In accord with the WSMO-Lite ontology, WSML-based preconditions and
effects are represented as RDF resources of type wl:Condition or wl:Effect respec-
tively. Every WSML-based precondition or effect resource has a single value of
the property rdf:value, pointing to a literal of the data type wsml:AxiomLiteral.

Definition 4.4 (wsml:AxiomLiteral) The data type wsml:AxiomLiteral10 is defined
as follows: the lexical space contains strings that follow the grammar production

axiomliteral = namespace? expr

where the grammar productions namespace and expr respectively define the syn-
tax for declaring namespaces and for logical expressions, as specified in [136].
The value space of this data type consists of valid WSML logical expressions.

For evaluating a precondition of a Web service or of an operation, the knowl-
edge base contains data from the current user goal (if any), and any other
background knowledge available to the evaluator. For evaluating an effect of a
Web service, the knowledge base also contains any data that has arrived from
the service during its invocation, and any variable bindings introduced by the
evaluation of the precondition(s).

Listing 4.2 shows a simple precondition for a hotel reservation service in
Rome, Italy; the service can only be invoked for requests for accommodation in
Rome, and only for up to ten guests. If the logical expression of an effect of this
service would use the variables ?request, ?guests, ?city, they would be bound to
the same values as when the precondition is evaluated.

1 ex:RomaHotelsPrecondition a wl:Condition ;
2 rdf:value ”””
3 namespace ”http://example.org/onto#”
4 ?request [ numberOfGuests hasValue ?guests,
5 hotel hasValue ?hotel ] memberOf ReservationRequest
6 and ?guests =< 10
7 and ?hotel [ locationCity hasValue ?city ] memberOf Hotel
8 and ?city = ”Rome” .
9 ”””ˆˆwsml:AxiomLiteral .

Listing 4.2: Example service precondition in WSML

10The prefix wsml: represents the namespace http://www.wsmo.org/wsml/wsml-syntax#

http://www.wsmo.org/wsml/wsml-syntax#
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4.6 Semantic Web Service Description Layering

In this chapter, we have defined a service ontology intended for semantic descrip-
tions of Web services, yet we have left this ontology free-floating (ungrounded in
any concrete Web services technologies), with the service model part represent-
ing an abstraction of the concrete existing non-semantic Web service description
technologies (such as WSDL). This is intentional, as this ontology is all that is
necessary for a Semantic Execution Environment to do many automation tasks;
the non-semantic descriptions are necessary only when actually communicating
with a Web service.

Nevertheless, our semantic descriptions of Web services are based on the
non-semantic, technical description languages. In contrast, the pre-existing SWS
technologies such as OWL-S and WSMO both have the semantic descriptions
separated from the technical ones, connected by links called grounding.

The following two chapters of this thesis discuss how WSMO-Lite fits on
top of two semantic Web service description languages: SAWSDL for semantic
annotations of Web services described in WSDL, and MicroWSMO for semantic
description of RESTful Web services. Both chapters define how concrete service
descriptions with semantic annotations are transformed into the service ontology
described in this chapter. This semantic form (as RDF data) is required for
processing in a Semantic Execution Environment (SEE), which implements the
semantic automation algorithms, such as described in Chapter 7 of this thesis.

Consequently, there is no need for service designers to author manually the
RDF form of the service description; this is only necessary for the actual pieces
of the description of the service semantics, such as service capabilities and non-
functional properties.

Figure 4.4 shows the layering of the various levels of service description.
The technical descriptions are at the bottom, annotated with semantics. The
annotation technology (SAWSDL or hRESTS/MicroWSMO) dictates how the
description maps into our service model. The semantic annotations point to
actual service semantics, which can then be used for automation in the SEE.

The figure also highlights how the common service model applies equally to
the two main Web service technologies — the so-called “WS–∗” stack based
on SOAP and WSDL, and described semantically with WSMO-Lite; and the
RESTful service technologies based on HTTP and HTML, described semanti-
cally with MicroWSMO.



Section 4.6. Semantic Web Service Description Layering 69

Service model

Technical layer

Semantic view

Semantic automation

WSMO-Lite service semantics

REST
HTML, hRESTS

S
A
W

S
D

L

WS-*
WSDL

HTTPSOAP

M
icro

W
S
M

O

C
o
m

p
o
si

ti
o
n

In
v
o
ca

ti
o
n

R
a
n
ki

n
g
, 

se
le

ct
io

n

D
is

co
v
e
ry

Service

F N B I

.

.

.

Operation 1

Operation 2

Operation N

output message 1

output message 2

output message N

input message N

input message 1

input message 2

Figure 4.4: Semantic Web service description layering



70 Chapter 4. Lightweight Service Ontology



Chapter 5

Annotating WS–∗ Services
with SAWSDL and
WSMO-Lite

The previous chapter defines WSMO-Lite, a lightweight ontology for semantic
description of Web services. Our ontology, however, is only a part of a seman-
tic Web service description; the lightweight approach to semantic description
requires that we build on existing standard technologies that are already in
place for non-semantic service description. In this chapter, we define the use
of WSMO-Lite on top of SAWSDL and the industry-standard Web Services
Description Language (WSDL).

First, in section 5.1 we detail how WSDL descriptions are annotated with
the WSMO-Lite semantics, along with some examples. The way we annotate
WSDL implies a mapping to the WSMO-Lite service model; in order to avoid
any ambiguity, we specify the mapping in Section 5.2. Section 5.3 then discusses
the deployment options for the ontologies that define the semantics of concrete
services, and in Section 5.4, we analyze some possibilities for validating WSMO-
Lite-based annotations of WSDL service descriptions.

5.1 Annotating WSDL with SAWSDL

The WSMO-Lite service model, based on WSDL and SAWSDL, intentionally
simplifies the structure of WSDL. In Chapter 4, we defined how the service
model can be annotated with semantics, but that does not directly translate to
how the annotations should apply to the more complex model of WSDL. Here
we therefore detail how WSMO-Lite is used in the full WSDL structure.

We focus on how service descriptions are annotated, i.e., how someone who
knows the semantics of a service can specify them in the service’s WSDL descrip-
tion. In Table 4.2, we have defined the semantic annotations for the WSMO-Lite
service model. Further below in this subsection, we discuss how these annota-
tions fit on components of WSDL descriptions; Table 5.1 presents a concise
summary: the first column indicates the type of semantics (functional, non-
functional, behavioral and information-model), the second column shows the

71
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WSMO-Lite service model component where the semantics gets attached, and
the third column enumerates the corresponding WSDL components where the
annotations belong.

Sem. type WSMO-Lite svc. model WSDL component

F Service Service or Interface

N Service Service

B Operation Interface Operation

I Message Element Declaration or
Type Definition

Table 5.1: WSMO-Lite semantics in WSDL

Note that while SAWSDL only describes the use of its modelReference an-
notations on WSDL interface components (along with some of their subcompo-
nents, such as operations) and on XML Schema element declaration and type
definition components, it allows the annotation of all the other components
in WSDL, including service. Our use of modelReference annotations on service
components in the following subsections is fully within the spirit of SAWSDL.

For the purpose of illustrating the WSDL annotations in the subsections
below, we use a simple example service with the following structure: there is a
WSDL interface HotelReservation, with operations search for looking up room
availabilities, reserve for making reservations, and cancelReservation for canceling
them. The interface is provided by one service, RomaHotels, which is constrained
to hotels in the city of Rome, Italy.

In the following subsections, we explain in detail the contents of Table 5.1
and we show examples of the various types of semantic annotations in WSDL.

5.1.1 Functional Annotations

In the WSMO-Lite service ontology, we represent functional semantics either
with functionality classifications or with formalized capabilities, captured as
preconditions and effects. Functionality categories, preconditions and effects are
all identified with URIs, and these URIs can be the value of a modelReference
annotation in WSDL.

Most directly, the functional semantics of a service can be described with
annotations on the WSDL service components (represented by <wsdl:service>

elements), shown in Listing 5.1. The annotations in this listing specify1 a func-
tionality category AccommodationReservationService, and the specific precondi-
tion and effect of this particular service.

In WSDL, a major part of a description is the service interface, which “de-
scribes a Web service in terms of the messages it sends and receives”, doing it
“by grouping related messages into operations” [133]. From the point of view
of service semantics, WSDL makes no assertions about different services that
implement the same interface, only that they will accept and emit messages
with the structure defined in the interface operations, and sequenced according

1We omit listing the definitions of these annotations for brevity; their meaning can be
taken intuitively.
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1 <wsdl:service name=”RomaHotels” interface=”HotelReservation”
2 sawsdl:modelReference=”
3 http://example.org/onto#AccommodationReservationService
4 http://example.org/onto#RomaHotelsPrecondition
5 http://example.org/onto#RomaHotelsEffect” >
6 <wsdl:endpoint ... />
7 </wsdl:service>

Listing 5.1: Example service functional annotation

to the operation message exchange patterns. In other words, the WSDL spec-
ification does not mandate that an interface should be tied to any particular
functionality that can be achieved using its operations.

Nevertheless, if a WSDL interface is created to support certain functionality,
the description of this functionality can be added as a semantic annotation on
the WSDL interface component. In our case, if the interface of our service is
specific for the general functionality of the service (hotel reservation), the an-
notations should be put on the interface, as illustrated in Listing 5.2, where we
include the AccommodationReservationService along with general hotel reserva-
tion precondition and effect. These annotations then apply to all WSDL services
that implement this interface.

1 <wsdl:interface name=”HotelReservation”
2 sawsdl:modelReference=”
3 http://example.org/onto#AccommodationReservationService
4 http://example.org/onto#HotelReservationPrecondition
5 http://example.org/onto#HotelReservationEffect” >
6 ... interface operations come here ...
7 </wsdl:interface>

Listing 5.2: Example interface functional annotation

It is also possible that both the service and its interface are annotated with
functional descriptions, when the service restricts or extends the functionality of
the interface. Furthermore, in WSDL 2.0, interfaces may extend other interfaces.
The functionality of an interface then includes the functionalities of the inter-
faces extended by it. In Section 5.2, we define how the functional annotations
of interfaces and services are combined when translating a WSDL description
into the WSMO-Lite service model that does not deal with service interfaces.

5.1.2 Nonfunctional Annotations

Nonfunctional properties define incidental details and policies specific to the
implementation or running environment of a service; therefore, they are natu-
rally expressed as annotations of the WSDL service component. For example,
a hotel reservation service may want to specify its price-per-reservation as a
nonfunctional property. Such an annotation is shown in Listing 5.3.
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1 <wsdl:service name=”RomaHotels” interface=”HotelReservation”
2 sawsdl:modelReference=”
3 http://example.org/onto#RomaHotelsPricePerReservation” >
4 </wsdl:service>

Listing 5.3: Example nonfunctional annotations

5.1.3 Behavioral Annotations

WSMO-Lite does not define a specific construct for behavioral descriptions;
instead, we use functional annotations of service operations and we expect that
the client will be able to decide the ordering of operation invocations based on
what the operations do.

In WSDL, service operations are described in the service interface; the in-
tended behavior of an interface can be described with annotations on its op-
eration components. For example, hotel reservation services have the following
behavioral constraints: the client can use search and reservation operations at
any point in time, but it can only cancel a reservation if it has previously made
one. Listing 5.4 sketches how preconditions and effects can be used to describe
such operation dependencies.

1 <wsdl:interface name=”HotelReservation”>
2 <wsdl:operation name=”search”> ... </wsdl:operation>
3 <wsdl:operation name=”reserve”
4 sawsdl:modelReference=”
5 http://example.org/onto#EffectReservationConfirmed”>
6 ...
7 </wsdl:operation>
8 <wsdl:operation name=”cancelReservation”
9 sawsdl:modelReference=”

10 http://example.org/onto#PreconditionReservationConfirmed
11 http://example.org/onto#EffectReservationCancelled”>
12 ...
13 </wsdl:operation>
14 </wsdl:interface>

Listing 5.4: Example behavioral annotations

In [125], we have shown that the WSMO-Lite behavioral semantics (func-
tional annotations on service operations) can be translated into a WSMO chore-
ography (cf. [105]), which is an explicit behavioral description based on Abstract
State Machines [15]. A WSMO choreography is a tuple (Σ, R), where Σ is the
state machine’s signature of symbols (ontology elements), and R is a set of tran-
sition rules of the form r : rcond → reff , specifying when the rule should fire,
and how the state will change. The symbols in Σ can be input and/or output
symbols, respectively corresponding to the input data sent to the service, and
the output data produced by the service.

The translation from WSMO-Lite behavioral annotations turns every anno-
tated operation of a given service into one or two rules, and the inputs/outputs
of the service are added to the symbol signature, as detailed in the following
list (we denote xI the model reference values of the input message of the oper-
ation, xO the model reference values of the output message, and φpre , φeff the
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precondition and effect of the operation’s capability):

1. xI is added to Σ as input symbol(s);

2. xO is added to Σ as output symbol(s);

3. an in-out operation2 is translated to a single rule r : xI ∧φpre → xO∧φeff

4. an in-only operation is translated to the rule r : xI ∧ φpre → φeff

5. an out-only operation is translated to the rule r : φpre → xO ∧ φeff

6. an out-in operation, which is initiated by a message from the service, is
translated to two rules, r1 : φpre → xO and r2 : xI ∧ xO → φeff

With a choreography constructed according to these steps, a WSMO-based
client is able to automatically invoke a service, i.e., calling its operations in the
correct and expected order.

5.1.4 Information Model Annotations

The semantics of the exchanged data is expressed through annotations on the
message schemas. A modelReference on an XML Schema element declaration or
type definition points to a description of the semantics of the data described by
the schema. An annotation pointing to an ontology class or relation means that
the data will define an instance (or multiple instances) of that class/relation. For
example, the annotations in Listing 5.5 specify that a <ReserveRoom> element
contains the stay dates and the number of persons for which the client wants to
make the reservation, the name under which the reservation will be made (all
the data so far wrapped in a ReservationRequest class), and the particular hotel.
These are the inputs to the operation.

1 <wsdl:types><xs:schema ...>
2 <xs:element name=”ReserveRoom”
3 sawsdl:modelReference=”http://example.org/onto#ReservationRequest
4 http://example.org/onto#Hotel”
5 sawsdl:loweringSchemaMapping=”http://example.org/ReserveLowering.xsp” >
6 ...
7 </xs:element>
8 </xs:schema></wsdl:types>
9

10 <wsdl:interface name=”HotelReservation”>
11 <wsdl:operation name=”reserve”>
12 <wsdl:input element=”ReserveRoom”/>
13 <wsdl:output element=”Reservation”/>
14 </wsdl:operation>
15 ...
16 </wsdl:interface>

Listing 5.5: Example information model annotations

The following section discusses the data lifting and lowering aspect of infor-
mation model annotations, necessary for communication between a Web service
and a semantic client.

2Operation message exchange patterns are discussed in Section 3.3.2 (Page 32).
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5.1.5 Data Lifting and Lowering

A SEE works on the semantic level, with its data represented in RDF. In con-
trast, Web services and their clients usually exchange messages in XML or in
some other non-semantic structured data format. In order to enable the SEE
to communicate with actual Web services, its semantic data must be lowered
into the expected input messages, and the data coming from the service in its
output messages must be lifted back up to the semantic level.

If there were Web services that would accept and produce RDF data in
their messages, lifting and lowering would be identity mappings; the SEE would
only need to serialize and parse the data in on-the-wire messages. However,
RDF-driven Web services are extremely rare. In fact, most Web services use
XML-based messages, therefore we must support lowering from RDF to XML,
and lifting back. In this section, we describe the use of XSPARQL, introduced
in Section 3.5.4, for implementing both transformation directions.

In WSDL, both lifting and lowering transformations are attached to message
descriptions, using the SAWSDL attributes liftingSchemaMapping and lower-

ingSchemaMapping respectively. A message in WSDL is described with an XML
Schema element declaration. A lifting transformation should accept documents
valid according to the schema of the element, and produce the equivalent RDF
data. A lowering transformation takes RDF data as its input, and should pro-
duce an XML document that is valid according to the schema of the message
element. Alas, verifying that a transformation would accept all valid documents,
or that all its possible results are going to be valid, is a known hard (if not
generally impossible) problem of proving program correctness. Transformation
authors must rely on testing.

To illustrate XSPARQL lifting and lowering transformations, we continue
with the example hotel reservation service. We show simple example message
schemas for the reservation operation in Listing 5.6 and the respective data
ontology in Listing 5.7.

We need a lowering transformation for the reservation request element so
that a SEE client can transform the data of a user goal (booking a room) into
the appropriate XML/SOAP message; this transformation is shown in List-
ing 5.8. Further, we need a lifting transformation for the resulting confirmed
Reservation; we show such a transformation in Listing 5.9.

The lowering transformation takes parts of the request data and puts it into
the resulting XML structure in a straightforward way. The lifting transformation
illustrates that it can use the input data together with the incoming response
message to construct the reservation graph in RDF. In this case, the reservation
response message does not repeat the reservation data, and to have a complete
model of the reservation, the lifting transformation copies the relevant data from
the request.

5.2 Mapping Annotated WSDL to WSMO-Lite
Service Model

In the previous section, we have discussed how to annotate a WSDL document
with service semantics; here, we show how an annotated WSDL document is
interpreted in our service model introduced in Chapter 4. In effect, this section
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1 <xs:schema targetNamespace=”http://example.org/reserve.xsd”
2 xmlns=”http://example.org/reserve.xsd”
3 xmlns:sawsdl=”http://www.w3.org/ns/sawsdl#”
4 xmlns:xs=”http://www.w3.org/2001/XMLSchema” >
5 <xs:element name=”ReserveRoom”
6 sawsdl:modelReference=”http://example.org/onto#ReservationRequest
7 http://example.org/onto#Hotel”
8 sawsdl:loweringSchemaMapping=”http://example.org/ReserveLowering.xsp” >
9 <xs:complexType>

10 <xs:all>
11 <xs:element name=”hotelID” type=”xs:string”/>
12 <xs:element name=”arrivalDate” type=”xs:date”/>
13 <xs:element name=”numberOfNights” type=”xs:short”/>
14 <xs:element name=”numberOfGuests” type=”xs:short”/>
15 <xs:element name=”name” type=”xs:string”/>
16 </xs:all>
17 </xs:complexType>
18 </xs:element>
19

20 <xs:element name=”Reservation”
21 sawsdl:modelReference=”http://example.org/onto#Reservation”
22 sawsdl:liftingSchemaMapping=”http://example.org/ReserveLifting.xsp” >
23 <xs:all>
24 <xs:element name=”confirmationID” type=”xs:string”/>
25 <xs:element name=”description” type=”xs:string”/>
26 </xs:all>
27 </xs:element>
28 </xs:schema>

Listing 5.6: XML Schema for example service messages

1 @prefix ns: <http://example.org/onto#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix xs: <http://www.w3.org/2001/XMLSchema#> .
5

6 ns:Reservation a rdfs:Class .
7 ns:ReservationRequest a rdfs:Class .
8 ns:Hotel a rdfs:Class .
9

10 ns:arrivalDate a rdf:Property .
11 # domain: either a reservation request or reservation
12 # range: xs:dateTime
13 ns:numberOfNights a rdf:Property .
14 # domain: either a reservation request or reservation
15 # range: xs:short
16 ns:numberOfGuests a rdf:Property .
17 # domain: either a reservation request or reservation
18 # range: xs:short
19 ns:primaryName a rdf:Property .
20 # domain: either a reservation request or reservation
21 # range: xs:string
22 ns:hotel a rdf:Property ;
23 # domain: either a reservation request or reservation
24 rdfs:range ns:Hotel .
25

26 ns:description a rdf:Property ;
27 rdfs:subPropertyOf rdfs:comment .

Listing 5.7: Ontology for example service message data
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1 declare namespace ns=”http://example.org/onto#”;
2 declare namespace nsxml=”http://example.org/reserve.xsd”;
3

4 for $hotel $peopleCount $arrivalDate $nightCount $name from <input.rdf>
5 where { :req a ns:ReservationRequest ;
6 ns:arrivalDate $arrivalDate ;
7 ns:numberOfNights $nightCount ;
8 ns:numberOfGuests $peopleCount ;
9 ns:primaryName $name ;

10 ns:hotel $hotel . }
11 return
12 <nsxml:ReserveRoom>
13 <nsxml:hotelID>{$hotel}</nsxml:hotelID>
14 <nsxml:arrivalDate>{$arrivalDate}</nsxml:arrivalDate>
15 <nsxml:numberOfNights>{$nightCount}</nsxml:numberOfNights>
16 <nsxml:numberOfGuests>{$peopleCount}</nsxml:numberOfGuests>
17 <nsxml:name>{$name}</nsxml:name>
18 </nsxml:ReserveRoom>

Listing 5.8: XSPARQL example: lowering transformation

1 declare namespace ns=”http://example.org/onto#”;
2 declare namespace nsxml=”http://example.org/reserve.xsd”;
3

4 let $reservation := //nsxml:Reservation
5 for $hotel $peopleCount $arrivalDate $nightCount $name from <input.rdf>
6 where { :req a ns:ReservationRequest ;
7 ns:arrivalDate $arrivalDate ;
8 ns:numberOfNights $nightCount ;
9 ns:numberOfGuests $peopleCount ;

10 ns:primaryName $name ;
11 ns:hotel $hotel . }
12 construct {
13 { $reservation/nsxml:confirmationID } a ns:Reservation ;
14 ns:arrivalDate $arrivalDate ;
15 ns:numberOfNights $nightCount ;
16 ns:numberOfGuests $peopleCount ;
17 ns:primaryName $name ;
18 ns:hotel $hotel ;
19 ns:description { $reservation/nsxml:description } .
20 }

Listing 5.9: XSPARQL example: lifting transformation
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specifies a WSMO-Lite parser for WSDL; a program or a library that trans-
forms a WSMO-Lite description (a WSDL document with SAWSDL annota-
tions pointing to semantics according to our service ontology) into RDF data
useful for semantic processing. Various implementation components, including
a WSMO-Lite/WSDL parser, are discussed in Chapter 8.

Figure 5.1 illustrates the mapping from WSDL to our service model; it shows
the main component correspondences. More formally, Table 5.2 contains the
whole mapping: it defines how WSDL components (and their properties) get
mapped onto RDF data using the classes and properties of our service model.

The table is phrased in the terms of the WSDL 2.0 component model defined
in [133]. In WSDL, components have properties, denoted with curly brackets:
for instance, the Service component has the properties {name}, {interface} and
{endpoints}; we adopt this notation in the text below. A property value may be
a single component, a set of components, or a literal.

In the table, the function prop(?x, property name) serves to access the value
of the property {property name} from the component bound to the variable ?x.
The functions id(?x) and id(?y,?x) return the URI identifier for the component
in the variable ?x (in context of the component ?y); these identifiers may for
example have a similar forms as the WSDL component identifiers defined in
Appendix C of [133].

The mapping/parsing process starts with a WSDL Service component and
descends recursively through the component properties. Note that the order in
which the various components are mapped is not significant, since the result is
an RDF graph with no inherent ordering.

The Service component is directly mapped to an instance of wl:Service (row 1
in the table). This instance should further be annotated with the service name
as the value of the property rdfs:label, and with a link to the original WSDL
document, using the property rdfs:isDefinedBy. The latter is used whenever the
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# WSDL Components WSMO-Lite RDF triples

1 Service ?s id(?s) a wl:Service.
id(?s) rdfs:label prop(?s, name).
id(?s) rdfs:isDefinedBy 〈wsdlDocumentURI〉.

2 ?i = prop(?s, interface)
?o ∈ prop(?i, interface operations)

id(?s) wl:hasOperation id(?s,?o).
id(?s,?o) a wl:Operation.
id(?s,?o) rdfs:label prop(?o, name).

3 ?i1 = prop(?s, interface)
∃ ?i2. . . ?in: ∀ k = 2. . . n:

?ik ∈ prop(?ik−1, extended interfaces)
?o ∈ prop(?in, interface operations)

id(?s) wl:hasOperation id(?s,?o).
id(?s,?o) a wl:Operation.
id(?s,?o) rdfs:label prop(?o, name).

4 ?m ∈ prop(?o, interface message references)
prop(?m, direction) = in

id(?s,?o) wl:hasInputMessage id(?s,?m).
id(?s,?m) a wl:Message.

5 ?m ∈ prop(?o, interface message references)
prop(?m, direction) = out

id(?s,?o) wl:hasOutputMessage id(?s,?m).
id(?s,?m) a wl:Message.

6 ?f ∈ prop(?o, interface fault references)
prop(?f, direction) = in

id(?s,?o) wl:hasInputFault id(?s,?f).
id(?s,?f) a wl:Message.

7 ?f ∈ prop(?o, interface fault references)
prop(?f, direction) = out

id(?s,?o) wl:hasOutputFault id(?s,?f).
id(?s,?f) a wl:Message.

8 ?r ∈ prop(?s, model reference) id(?s) sawsdl:modelReference ?r.
9 ?r ∈ prop(?i, model reference) id(?s) sawsdl:modelReference ?r.
10 ?r ∈ prop(?o, model reference) id(?s,?o) sawsdl:modelReference ?r.
11 ?e = prop(?m, element declaration)

?r ∈ prop(?e, model reference)
id(?s,?m) sawsdl:modelReference ?r.

12 ?li ∈ prop(?e, lifting schema mapping) id(?s,?m) sawsdl:liftingSchemaMapping ?li.
13 ?lo ∈ prop(?e, lowering schema mapping) id(?s,?m) sawsdl:loweringSchemaMapping ?lo.
14 ?f’ = prop(?f, interface fault)

?e = prop(?f’, element declaration)
?r ∈ prop(?e, model reference)

id(?s,?f) sawsdl:modelReference ?r.

15 ?li ∈ prop(?e, lifting schema mapping) id(?s,?f) sawsdl:liftingSchemaMapping ?li.
16 ?lo ∈ prop(?e, lowering schema mapping) id(?s,?f) sawsdl:loweringSchemaMapping ?lo.
17 prop(?o, safe) = true id(?s,?o) sawsdl:modelReference

wsdlx:SafeInteraction.

Table 5.2: Mapping from WSDL components to WSMO-Lite service model; the
functions prop and id are explained in the text.



Section 5.2. Mapping Annotated WSDL to WSMO-Lite Service Model 81

original WSDL is necessary; for instance in automation tasks that invoke the
service’s operations, the WSDL contains the binding and endpoint information
necessary to perform the invocation.

Rows 2–3 map all the service’s operations, using ?s from row 1. A WSDL ser-
vice implements an interface, which is then the value of the service component’s
{interface} property. All operations of that interface (i.e., Interface Operation
components grouped in the {interface operations} property of the interface),
and all the operations of interfaces extended by this interface, either directly or
through further interface extension steps, are mapped to instances of wl:Opera-
tion, and attached with wl:hasOperation to the wl:Service instance. Like services,
operations also have names suitable for the rdfs:label property.

Rows 4–7 map the operations’ input, output and fault messages, using ?o
from rows 2–3. A WSDL interface operation component has the properties
{interface message reference} and {interface fault reference}, each a set of corre-
spondingly named components that describe the various messages and faults ex-
changed by the operation. Each message reference and fault reference component
is mapped to an instance of wl:Message; message references whose {direction}
property is in (or out) are attached to the wl:Operation instance using the prop-
erty wl:hasInputMessage (or wl:hasOutputMessage). Similarly, fault references are
attached using the properties wl:hasInputFault and wl:hasOutputFault, depending
on the {direction} property.

Rows 8–16 handle the SAWSDL annotations present in the WSDL. Rows 8
and 9 combine model references from the service ?s (from row 1) and its in-
terface ?i (from row 2) on the generated wl:Service instance, and row 10 copies
operation model references to the corresponding wl:Operation instance (with ?o
from rows 2–3).

Message annotations are gathered from the schema definitions for the mes-
sages. An Interface Message Reference component has an {element declaration}
property whose value describes the message schema; in rows 11–13, the model
references and the lifting and lowering schema mappings of this element dec-
laration are mapped on the corresponding wl:Message instance (with ?m from
rows 4–5). In rows 14–16, fault message annotations are collected in the same
way from the element declaration specified by the fault components referenced
from the operation fault reference components3 (with ?f from rows 6–7). Note
that SAWSDL propagates annotations from type definitions to element declara-
tions; such propagated values are reflected in the component model that is the
input to our mapping.

While WSDL focuses on the messaging and networking aspects of a service
description, the use of HTTP has necessitated that WSDL introduce a semantic
flag for marking operations as safe as defined in the Web architecture (we discuss
Web interaction safety in Section 3.2.4). An assertion that an operation is safe
is a statement about the functionality of the operation; in particular, about the
lack of application-significant side-effects and new obligations. While safety does
not imply anything about what the operation will actually do, it does mean that
the operation can be invoked opportunistically, for example for offer discovery,
as shown in Chapter 7. Therefore, row 17 in the mapping table maps the safety

3WSDL 2.0 has an indirection between operations and fault data definitions: where an
operation message reference directly identifies an XML Schema element declaration, an oper-
ation fault reference identifies a fault description, which then specifies the element declaration
for the data.
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Example WSDL Corresponding RDF View

1 <wsdl:description>
2 <wsdl:types>
3 <xs:schema ...>
4 <xs:element name=”ReserveRoom”
5 sawsdl:modelReference=”
6 ...#ReservationRequest
7 ...#Hotel”
8 sawsdl:loweringSchemaMapping=”
9 .../ReserveLowering.xsp”>

10 ...
11 </xs:element>
12 </xs:schema>
13 </wsdl:types>
14 <wsdl:interface name=”HotelReservation”
15 sawsdl:modelReference=”
16 ...#AccommodationReservationService
17 ...#HotelReservationPrecondition
18 ...#HotelReservationEffect”>
19 <wsdl:operation name=”search”>
20 ...
21 </wsdl:operation>
22 <wsdl:operation name=”reserve”
23 sawsdl:modelReference=”
24 ...#EffectReservationConfirmed”>
25 <wsdl:input element=”ReserveRoom”/>
26 <wsdl:output element=”Reservation”/>
27 </wsdl:operation>
28 <wsdl:operation name=”cancelReservation”
29 sawsdl:modelReference=”
30 ...#PreconditionReservationConfirmed
31 ...#EffectReservationCancelled”>
32 ...
33 </wsdl:operation>
34 </wsdl:interface>
35 <wsdl:service name=”RomaHotels”
36 interface=”HotelReservation”
37 sawsdl:modelReference=”
38 ...#RomaHotelsPrecondition
39 ...#RomaHotelsEffect
40 ...#RomaHotelsPricePerReservation”>
41 <wsdl:endpoint ... />
42 </wsdl:service>
43 </wsdl:description>

@prefix ex: <.../example/genid#> .
@prefix rdfs: <.../rdf−schema#> .
@prefix sawsdl: <.../sawsdl#> .
@prefix wl: <.../wsmo−lite#> .

35 ex:svc a wl:Service ;
35 rdfs:label ”RomaHotels” ;
35 rdfs:isDefinedBy <original WSDL URI> ;

sawsdl:modelReference
16 <...#AccommodationReservationService> ,
17 <...#HotelReservationPrecondition> ,
18 <...#HotelReservationEffect> ,
38 <...#RomaHotelsPrecondition> ,
39 <...#RomaHotelsEffect> ,
40 <...#RomaHotelsPricePerReservation> ;
19 wl:hasOperation ex:op1 ;
22 wl:hasOperation ex:op2 ;
28 wl:hasOperation ex:op3 .

19 ex:op1 a wl:Operation ;
19 rdfs:label ”search” .

22 ex:op2 a wl:Operation ;
22 rdfs:label ”reserve” ;
25 wl:hasInputMessage ex:msg1 ;
26 wl:hasOutputMessage ex:msg2 ;

sawsdl:modelReference
24 <...#EffectReservationConfirmed> .

25 ex:msg1 a wl:Message ;
sawsdl:modelReference

6 <...#ReservationRequest> ,
7 <...#Hotel> ;

sawsdl:loweringSchemaMapping
9 <.../ReserveLowering.xsp> .

26 ex:msg2 a wl:Message .

28 ex:op3 a wl:Operation ;
28 rdfs:label ”cancelReservation” ;

sawsdl:modelReference
30 <...#PreconditionReservationConfirmed> ,
31 <...#EffectReservationCancelled> .

Figure 5.2: Consolidated WSDL example and its mapping to RDF, showing for
each generated triple the corresponding line of the example WSDL; the URIs
are shortened for space and readability.

flag defined in [134] to a semantic annotation — a model reference with the value
wsdlx:SafeInteraction (with ?o from rows 2–3), where the prefix wsdlx refers to the
namespace http://www.w3.org/ns/wsdl-extensions# (cf. Section 6.5). As a
functional annotation on operations, the safety property becomes part of the
service’s behavioral semantics.

To illustrate the mapping, Figure 5.2 consolidates the WSDL example snip-
pets from Listings 5.1–5.5 and presents the corresponding RDF form, in No-
tation 3 syntax. In the RDF, each number in front of a line indicates the line
number in the left-hand-side WSDL document that leads to the particular right-
hand-side RDF triple.

http://www.w3.org/ns/wsdl-extensions#
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5.3 Deployment of Ontologies Used in SAWSDL
Descriptions

The preceding sections discuss WSMO-Lite in terms of the annotations that
it places in WSDL documents. However, the annotations merely point from
WSDL to semantic concepts identified by URIs. The semantic concepts must
be defined somewhere, in the form of information ontologies, functionality tax-
onomies, the definitions of service/operation preconditions and effects in terms
of logical expressions, or ontologies of nonfunctional semantics. Here, we discuss
the deployment options for these ontologies.

Note that we assume the client already has access to the annotated WSDL
descriptions. WSDL documents can be available at the service endpoints or
in service registries, such as the semantic registry iServe (see Section 8.3) or
the search engine seekda.com, which crawls the Web for public WSDL service
descriptions.

There are three broad options for where the definitions of the semantic con-
cepts used in the SAWSDL files can be located:

1. the concept definitions are embedded in the WSDL documents along
with the annotations,

2. the concept definitions are available publicly on the Web, discoverable
through their URIs,

3. or the concept definitions are stored in a repository that the clients are
expected to be able to access.

These three options are differently suitable for various envisioned situations,
and they can even be combined: for instance, a standard functionality taxonomy
can be available publicly on the Web, an internal product ontology can be
in a local repository, and concrete precondition and effect definitions can be
embedded in the WSDL document. In the following subsections, we sketch the
main characteristics of the deployment options and some typical cases where
the options should be used. Figure 5.3 illustrates the options graphically.

5.3.1 Embedding

Embedding the relevant concept descriptions in the WSDL document helps
make the document self-contained, i.e., the content of the document is all a se-
mantic client needs in order to include the described Web service in its process-
ing. An embedded semantic description is illustrated in Listing 5.10 on lines 6–
21: RDF statements are contained in an extensibility element inside the WSDL
document. In the interest of readability, the RDF is written in Notation 3 in-
side a proposed element <rdf:n3>; the standard RDF/XML syntax would use
<rdf:RDF> as the extensibility element in WSDL.

SOA deployments often contain registries of service descriptions (such as
UDDI [120]). With semantic concept descriptions embedded in the WSDL doc-
uments, no further registry infrastructure is needed. Therefore, this approach
enables gradual adoption of semantic automation in existing SOA systems.

A semantic description would typically be embedded in a WSDL document
if it is specific to the given Web service. If multiple WSDL files should share the
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1 <wsdl:description>
2 <wsdl:service name=”RomaHotels”
3 sawsdl:modelReference=”http://example.com/#RomaHotelsPrecondition”>
4 </wsdl:service>
5

6 <rdf:n3>
7 @prefix ex: <http://example.org/onto> .
8 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
9 @prefix wsml: <http://www.wsmo.org/wsml/wsml−syntax#> .

10 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
11

12 ex:RomaHotelsPrecondition a wl:Condition ;
13 rdf:value ”””
14 namespace ”http://example.org/onto#”
15 ?request [ numberOfGuests hasValue ?guests,
16 hotel hasValue ?hotel ] memberOf ReservationRequest
17 and ?guests =< 10
18 and ?hotel [ locationCity hasValue ?city ] memberOf Hotel
19 and ?city = ”Rome” .
20 ”””ˆˆwsml:AxiomLiteral .
21 </rdf:n3>
22 </wsdl:description>

Listing 5.10: Embedding semantic descriptions in WSDL

same description, embedding it in all the files would mean duplication of content,
and an increase of the cost of maintenance, with a risk of the shared parts
becoming inconsistent. To address such sharing in a WSDL-based infrastructure
that supports import of WSDL documents with extensions, the shared semantic
descriptions could be embedded in a WSDL document imported from all the
other WSDL files that use it.

To process a WSMO-Lite description that embeds the semantic definitions
within the WSDL file, the client must perform the following steps:

1. Identify the extension elements in the WSDL description which contain se-
mantic definitions (e.g., the <rdf:n3> element, or the standard <rdf:RDF>

element for RDF/XML). A particular client may support only a limited
set of such elements; <rdf:RDF> SHOULD be among them.

2. Process the semantic data inside these elements and either merge the def-
initions with the client’s knowledge base, or register them for subsequent
retrieval, when processing the SAWSDL annotations themselves.

Abstractly, this process precedes the processing of the actual annotations.
In effect, the steps above build a local private repository (as discussed in Sec-
tion 5.3.3) within the client, which is then queried whenever the client needs to
know the meaning of an annotation.

5.3.2 Public Availability

Semantic descriptions and ontologies that are not specific to any particular Web
service, especially such as domain and upper ontologies, should be external to
the WSDL documents, and many of them will be public.
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With the semantic concept descriptions outside the WSDL document, it is
necessary for the client to be able to locate the description of each concept indi-
cated by a modelReference. The SAWSDL specification recommends that “the
URI used for pointing to a semantic concept resolve to a document containing
its definition.” [107] To find the definition of a particular concept, the client can
make an HTTP request to the concept URI; the HTTP response should either
directly contain the definition, or it should redirect to a resource that does.

5.3.3 Private Repository

In private SOA deployments, such as inside enterprises, it may be desirable to
keep the semantic concept descriptions external to the WSDL documents and
yet hide them from the public Web. For instance, sensitive product descriptions
in the company’s product ontology could reveal trade secrets if made public.
Therefore, there is an option to store the semantic descriptions in a local reposi-
tory that is shared between the service provider(s) and the semantic clients that
may be distributed in different departments of the enterprise.

The private repository can be an intranet server (using public Web technolo-
gies in a separated private network), or a dedicated database for the semantic
data. A client that encounters WSMO-Lite annotations can resolve them (and
find the appropriate semantic concept descriptions) by querying the known in-
ternal repository, or if the intranet solution is in use, by following the same steps
as described in the preceding section.

5.4 Validation of WSMO-Lite Descriptions in
SAWSDL

Validation is a process of verifying that a formal document follows certain ap-
plication-specific rules. Here, we discuss the validation of WSDL documents
annotated with WSMO-Lite semantics, to detect potential problems in service
descriptions. However, even a valid description does not guarantee success in
using the service, as we cannot eliminate run-time failures such as a product
being out of stock, or errors such as a network outage. On the other hand, some
automation may succeed even with an invalid description. For example, during a
particular run, the client may not encounter the problematic parts of the invalid
description.

Therefore, a validator is a useful, yet non-essential, tool for improving the
chances of successful automation with WSMO-Lite descriptions, by identifying
potential problems and thus saving valuable human debugging effort.

For the combination of SAWSDL and WSMO-Lite, we distinguish four facets
of validity, as described in Section 5.4.1. Section 5.4.2 details the validation rules
for one of the facets, consistency, and Section 5.4.3 then describes the process
of WSMO-Lite validation.

5.4.1 Facets of Validity

We distinguish the following facets of validity of SAWSDL/WSMO-Lite descrip-
tions:
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1. Syntax constrains the basic building blocks of a formal document, which
must be a well-formed sentence of some underlying language. WSDL and
SAWSDL have well-defined syntax, built on the syntax of XML 1.0. The
syntax of XML is described in an Extended Backus-Naur Form (EBNF)
notation in the specification. The structure of WSDL and SAWSDL is
described in their respective XML Schemas, with further constraints in
prose in the specifications, especially in WSDL 2.0. A WSDL validator
first checks that the input document is well-formed XML, and then it
validates the WSDL schema and any further constraints. A SAWSDL val-
idator checks that the annotation values are URIs, and possibly that the
document contains no unknown attributes in the SAWSDL namespace,
which would likely indicate typographical errors. A WSMO-Lite-oriented
validator should include validation steps for WSDL and SAWSDL.

2. Consistency: a consistent description does not contradict itself. We define
a number of consistency rules for WSMO-Lite over WSDL in Section 5.4.2.
A validator can only verify the consistency of a description to the extent
to which it understands the formal semantics of the annotations, therefore
some of the rules defined in Section 5.4.2 form rather a guide for humans
who check and test the description, as opposed to a computer algorithm
for automatic validation.

3. Completeness: depending on the tasks that the description should sup-
port, it may only need to capture a subset of the service semantics. The
relationship between SWS automation tasks and the required semantics is
shown in Table 4.1 (on page 56). A validator can take a WSMO-Lite ser-
vice description and report the automation tasks for which the description
has sufficient information, or if the user specifies a set of tasks that need
to be supported, the validator can report what annotations are missing, if
any.

4. Correctness: a description should be a truthful model of its underlying ser-
vice. A syntactically invalid or semantically inconsistent description can-
not be considered truthful. However, above validity and consistency check-
ing, correctness is generally verified by testing or, ultimately, by “adding
eyeballs”.

As is apparent, automatic validation is only possible to a certain degree.
While we strive for correctness of semantic descriptions, the facets of syntax,
consistency and completeness are the only aspects for which we have at least par-
tial validation algorithms. Syntactical validity and completeness can be checked
entirely, whereas consistency can only be checked to the extent of available
reasoning power.

Note that the above formulations of completeness and correctness differ from
those introduced by Preist in [93]. Preist defines both completeness and correct-
ness in the context of service discovery, in terms of the (possible or actual)
functionalities of the service: a service description is complete if it describes all
the functionalities, and it is correct if it does not describe any functionalities
that the service does not actually offer. Preist notes that it is often “possible
to achieve completeness but not correctness in service descriptions” — “for ex-
ample, a bookseller can state ‘I sell books’ in an advert, but cannot guarantee
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that every title is in stock.” [93] With the focus on covering the functionali-
ties of a service, neither property (completeness or correctness) can be checked
by an automated tool. On the other hand, our definition of completeness deals
with the coverage of support for SWS automation tasks by a given service de-
scription, which can be checked algorithmically. Our definition of correctness
corresponds to a notion of an ideal, perfect description; it would include both
Preist’s completeness and correctness. It is not automatically verifiable, but
useful to conclude the discussion of the facets of validity.

5.4.2 WSMO-Lite Consistency Rules

As we have said in the previous section, a consistent description does not contra-
dict itself. Inconsistencies (or contradictions) can occur between related parts of
a formal description. In this section, we identify the relations between different
WSMO-Lite annotations, and we define rules that must hold for the annotations
to be consistent.

Table 5.3 identifies the pairs of annotations that are related in a way that
gives space for inconsistencies. Both rows and columns are types of annotations
(Functional, Behavioral, Nonfunctional and Information model semantics); an
empty table cell indicates no relationship, the symbol • means potential con-
flicts for which we have at least some automatic validation algorithms, and the
symbol ◦ indicates potential conflicts that our validation rules cannot uncover.

F B N I

F • • •
B •
N ◦ •
I ◦

Table 5.3: Consistency relationships among WSMO-Lite annotations

Due to our definition of the types of semantics, nonfunctional annotations
cannot conflict with functional or behavioral annotations because the nonfunc-
tional semantics cover aspects orthogonal to the other types. Further, there
cannot be internal conflicts in behavioral annotations because operations of a
single service may be independent, preventing meaningful comparison of their
behavioral annotations. Other than that, there is potential for conflicts among
all the other pairs of annotations. In the rest of this section, we discuss these
potential conflicts and approaches for their validation.

Conflicts within Functional Annotations

WSMO-Lite annotates WSDL with functional semantics on two levels: both
the WSDL service and its interface can be annotated. As interface annotations
apply to all services that implement the interface, they are taken in conjunction
with the service annotations. In case of logical expressions, as used for service
preconditions and effects, the conjunction of two expressions may result in an
unsatisfiable expression (such as A ∧ Ā). Hence,
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Rule 1 If a WSDL service and the interface implemented by the service are
both annotated with capabilities, the conjunction of the preconditions must be
satisfiable, and the conjunction of the effects must also be satisfiable.

To validate Rule 1, we employ a suitable logical reasoner and check the
satisfiability of the conjunctions of the preconditions or effects.

With this rule, we can detect inconsistencies in functional annotations with
capabilities; however, no such rule can be defined for functional categories anno-
tating WSDL services and their interfaces. Even if two functionality categories
were declared to be distinct (for example, a concrete hotel room in Italy cannot
also be a hotel room in Germany), a single service can provide access to either
category, depending on the request.

Note that within the framework of WSMO-Lite, we cannot compare func-
tional annotations using precondition and effect expressions with functional an-
notations that use functionality categories. This limitation applies not only to
the verification of Rule 1, but also to the rules that follow below.

Conflicts Between Functional and Behavioral Annotations

Functional semantics describe what a service can do. Behavioral semantics de-
scribe how a client should communicate with the service — in what order it
should invoke the available operations. In WSMO-Lite, we specify the behav-
ioral semantics of a Web service through functional annotations of the service’s
operations. In case both the service functionality and the operation function-
alities are described using capabilities (preconditions and effects), we could be
able to check the following two rules:

Rule 2 The behavioral semantics of a service allows at least one successful exe-
cution coming from a state that fulfills the service capability precondition and
ending in a state that fulfills the capability effect.

Rule 3 For every state that fulfills the precondition of a service capability, the
behavioral semantics of the service allows at least one successful execution end-
ing in a state that fulfills the capability effect.

In effect, these two rules both check the consistency of the service functional
annotations with the operation functional annotations (checking that the op-
erations can deliver what the service promises), with Rule 2 being a weaker
variant of Rule 3. If a Web service description satisfies Rule 3, and the client
can satisfy the service’s precondition, there exists an order of operations that,
barring any runtime failures, will end up satisfying the effect of the service. If
a service description only satisfies Rule 2, there may be cases when the client
cannot actually find a suitable operation ordering, even if the precondition of
the service is satisfied.

For instance, if the service functional description says the service can sell
and deliver products, but there is no actual operation that allows for the client
to specify delivery options, Rule 3 would be violated because physical delivery
cannot be accomplished, but the service would comply with Rule 2 because if
delivery is not necessary (for instance when purchasing music in a digital format,
such as MP3), the service could be used successfully.
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Rules 2 and 3 can be implemented using planning or constraint satisfaction
algorithms.

Conflicts within Nonfunctional Annotations

The nonfunctional semantics of a Web service can consist of multiple nonfunc-
tional properties. Since WSMO-Lite does not by itself provide details of how
nonfunctional properties are expressed (WSMO-Lite relies on domain ontolo-
gies), we cannot formulate a concrete rule for detecting inconsistencies. How-
ever, a particular validator may support some set of nonfunctional property
specifications and it may be able to check their consistency; for example, a sin-
gle hotel reservation service cannot specify two different per-reservation prices
(unless the prices can be scoped to different kinds of reservations, if the price
ontology allows that).

Conflicts within Information Model Annotations

The information model of a Web service mainly describes the input and output
messages of the service. There are two kinds of information model annotations
in SAWSDL: i) a model reference points from an XML Schema component
to a class or relation, which means that XML data described by this compo-
nent will carry instances of the class or relation; ii) lifting schema mapping or
lowering schema mapping annotations (denoted simply as lifting and lowering
annotations) point to data transformations that map between XML data and
the ontological instances it represents. Naturally, these annotations need to be
consistent:

Rule 4 If an XML schema component has both a model reference annotation
and a lifting annotation, the lifting transformation must accept XML data valid
according to the schema component, and produce instances valid according to
the ontology element specified by the model reference annotation. Similarly, if
an XML schema component has both a model reference annotation and a low-
ering annotation, the lowering transformation must accept instance data valid
according to the ontology element specified by the model reference annotation,
and produce an XML element valid according to the schema component.

For illustration, a message may be described as being a ReservationRequest.
If it has a lifting annotation, the lifting transformation must accept an XML
document that is valid according to the message schema, and the result of
the transformation must contain an instance of ReservationRequest; and if the
message has a lowering annotation, the lowering transformation must take an
instance of ReservationRequest as its input and return an XML document that
is valid according to the message schema.

There cannot be a general algorithm which checks this rule for powerful
Turing-complete transformation languages such as XSLT and XSPARQL, how-
ever the rules might be implemented for some common cases, or for less powerful
transformation languages.
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Consistency of Information Model with Other Annotations

While the information model of a Web service mainly deals with the input and
output messages, it also describes the terms used in the service or operation
preconditions and effects (for functional and behavioral semantics), and in non-
functional properties.

A validator can traverse the functional, behavioral and nonfunctional service
annotations, along with the model reference annotations of the input and output
messages, and check the availability of the formal description of the information
model, as described in Section 5.3, and report a problem for every term used
for which no formal description can be found.

5.4.3 Validation Process

To summarize, a WSMO-Lite validator takes a semantic Web service description,
potentially along with a list of SWS tasks that the description should support,
and returns a listing of errors (problems that must be corrected) and warnings
(potential problems which may or may not need fixing), if any, according to
these steps:

1. First, syntactical validity of the input description should be checked, re-
porting any problems as errors.

2. The semantic annotations in the document are checked against all ap-
plicable consistency rules (to the extent that the rules can be checked
automatically), any inconsistencies are reported as errors.

3. If the list of intended SWS automation tasks is available to the validator,
the input description is checked for completeness of annotations required
by these tasks; any violations are reported as warnings.

4. If the validator is run without a list of intended SWS automation tasks,
it runs completeness checks for all tasks and reports those for which the
description contains sufficient annotations.
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Chapter 6

MicroWSMO: Annotating
RESTful Web Services

“There’s usually an HTML page.” — Anonymous
(regarding Web API descriptions)

Chapter 4 defines a lightweight ontology for semantic description of Web
services, and Chapter 5 applies it to annotating WSDL, the industry-standard
Web Services Description Language. The Web contains many services that are
not described in WSDL. Especially services that are more native to the Web —
ones that are “RESTful” — are seldom described in WSDL. In this chapter, we
discuss how RESTful services are actually described, and how those descriptions
can be made accessible to machine processing and SWS automation.

First, in Section 6.1, we discuss how the WSMO-Lite service model applies
to RESTful services. In Section 6.2, we define two microformats that can be
used to turn HTML documentation of RESTful services into machine-readable
semantic descriptions, then Section 6.3 looks at other already-machine-oriented
service and resource descriptions that can also be annotated semantically. In
Section 6.4, we address data lifting and lowering for the specific case of REST-
ful services. In Section 6.5, we briefly analyze some types of semantics that
the HTTP protocol imposes on RESTful services. Finally, Section 6.6 discusses
the deployment of semantic descriptions for RESTful services, and Section 6.7
sketches the validation of hRESTS/MicroWSMO descriptions.

6.1 Model for Semantic Description of RESTful
Services

RESTful Web services (often called “Web APIs”) are hypermedia applications
consisting of interlinked resources (like Web pages) that are oriented towards
machine consumption. In their structure and behavior, RESTful Web services
are very much like common Web sites [101].

From the Architecture of the Web [3] and from the REST architectural
style [30], we can extract the following concepts inherent in RESTful services:
a resource, identified by a URI that also serves as the endpoint address where
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Figure 6.1: Functional model of a RESTful Web service

clients can send requests; every resource has a number of methods (in HTTP,
the most-used methods are GET, HEAD, POST, PUT and DELETE) that
are invoked by means of request/response message exchanges. The messages
can carry hyperlinks, which point to other resources and which the client can
navigate when using the service. A hyperlink can simply be a URI, or it can
be a form which specifies not only the URI of the target resource, but also the
method to be invoked and the structure of the input data.

Note that the Web architecture contains no formal concept of a service as
a whole; a service is a grouping of resources that is useful for developing,
advertising and managing related resources.

The hypertext nature of RESTful Web services differs from the service model
discussed in the preceding chapters: hypertext emphasizes the decomposition
of a service into Web resources which are preferably units of data, whereas
the WS–∗-based model in WSMO-Lite decomposes services into operations, i.e.
units of function.

Figure 6.1 depicts a natural model for RESTful services. A Web service has
a number of resources whose HTTP methods represent operations, each with
potential inputs and outputs. The service also has a hypertext graph structure
where the outputs of some operations may link to other operations. In contrast
to the model described in Chapter 4, a RESTful service does not have a single
location, instead each resource has its own address; a parametrized URI template
(cf. Section 3.2.3) can denote a set of resources with the same operations.

In this section, we use an example RESTful Web service to show that, for
the purposes of semantic automation, we can map the resources-and-hypermedia
structure of a RESTful service into the service model as a set of operations. This
allows us to integrate RESTful services with WS–∗ services in a single semantic
automation approach.

Below, Section 6.1.1 shows the example RESTful service, and Section 6.1.2
uses this example to show the mapping of a hypermedia structure to our model.

6.1.1 Example RESTful Web Service

Figure 6.2(a) depicts an example RESTful hotel booking service, with its re-
sources and the links among them; we use this synthetic example to demonstrate
how a hypermedia service can naturally be viewed as a set of operations.
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Figure 6.2: Structure of an example RESTful hotel reservation service: (a) show-
ing types of resources, (b) showing details of search results resources with ex-
ample searches

The “service homepage” is a resource with a stable address and information
about the other resources that make up the service. It serves as the initial entry
point for client interaction. In a human-oriented Web application, this would be
the homepage, such as http://hotels.example.com/.

The existence of such a stable entry point lowers the coupling between the
service and its clients, and it enables the evolution of the service, such as adding
or removing functionality. A client need only rely on the existence of the fixed
entry point, and it can discover all other functionality as it navigates the hy-
permedia. In contrast, in service-description-driven distributed computing tech-
nologies, such as WS–∗ Web services, the client is often programmed against
a given service description before it uses the service, making it harder to react
dynamically to changes of the service.

The homepage resource of our example service contains a form for searching
for available hotels, given a number of guests, a start date and the duration of
the stay, and a location. The search form serves as a parametrized hyperlink
to search results resources, as shown in Figure 6.2(b), one resource per every
unique combination of the input data — the form prescribes how to create a
URI that contains the input data; the URI then identifies a resource with the
search results. As there is a large number of possible search queries, there is
also a large number of results resources, and the client does not need to know
that all these resources are likely handled by a single software component on
the server.

The search results are modeled as separate resources (as opposed to, for
instance, a single data-handling resource that takes the query parameters in an
input message) because it simplifies the reuse of the hotel search functionality in
other services or in mashups (lightweight compositions of Web applications), and
because it also supports caching of the results. With individual search results
resources, creating the appropriate URI and retrieving the results (with HTTP
GET) is easier in most programming frameworks than POSTing the input data
in a structured data format to one Web resource, which would then reply with
the search results.

In this example, search results are presented as a list of concrete rates avail-
able at the hotels in the given location, for the given dates and the number
of guests, as also shown in Figure 6.2(b). Each item of the list contains a link
to further information about the hotel (e.g. the precise location, star rating
and other descriptions), and a form for booking the rate, which takes as input

http://hotels.example.com/
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the payment details (such as credit card information) and an identification of
the guest(s) who will stay in the room. The form data is submitted (with the
POST method) as a booking request to a payment resource, which processes
the booking and redirects the client to a newly created confirmation resource.
The content of the confirmation can serve as a receipt.

The service homepage resource also links to “my bookings”, a resource listing
the bookings of the current user (who is identified through a suitable authen-
tication functionality). This resource links to the confirmations of the bookings
done by the authenticated user. With such a resource available to them, client
applications no longer need to store the information about performed bookings
locally.

The confirmation resources may further provide a way of canceling the
reservation (not shown in the picture, could be implemented with the HTTP
DELETE method).

Together, all the resources we’ve described here form the hotel booking ser-
vice. However, since the involved Web technologies actually work on the level
of resources, service is a virtual term here and Figure 6.2 shows the service in
a dashed box.

6.1.2 Viewing Hypermedia as Operations

While the resources of the service (the nouns) form a hypermedia graph (shown
in Fig. 6.2), the interaction of a client with a RESTful service is a series of oper-
ations (the verbs or actions) where the client sends a request to a resource and
receives a response that may link to further useful resources. The hypermedia
graph (the links between resources) guides the sequence of operation invoca-
tions, but the meaning of a resource is independent of where it is linked from;
the same link or form, wherever it is placed, will always lead to the same action.
Therefore, the operations of a RESTful Web service can be considered indepen-
dently from the graph structure of the hypertext. In fact, RESTful services are
commonly documented as sets of operations available to the clients — as APIs.

In Table 6.1, we summarize the mapping from the Web-architecture-based
model of RESTful services into the WSMO-Lite service model. Effectively, an
automated client (such as a semantic automation system) can view RESTful ser-
vices through the model from Figure 4.2, with the operations being the methods
available on the resources that constitute the RESTful services. This common
view allows us to support WS–∗ and RESTful services in WSMO-Lite without
regard to their technological differences.

RESTful services WSMO-Lite service model

Service (a group of resources) Service

Resource – (not modeled explicitly)

Resource method Operation

Method request/response Operation input/output message

Hyperlink – (treated as part of message data)

Table 6.1: Mapping of RESTful services to WSMO-Lite service model

Our description of the example hotel reservation service in the preceding
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Figure 6.3: Operations of the example service from Figure 6.2

subsection has been based on the hypermedia aspect: we described the resources
and how they link to each other. Figure 6.3 demonstrates the mapping: we
extract here the operations present in the example service. The search form in
the homepage represents a search operation, the hotel information pages linked
from the search results can be viewed as an operation for retrieving hotel details,
the reservation form for any particular available rate becomes a reservation
operation, and so on.

In summary, we have shown here that the service model from Figure 4.2 is
an appropriate model for capturing the structure of RESTful Web services for
the purpose of semantic automation.

6.2 Describing RESTful Web Services in HTML

In order to provide semantic automation of the usage of RESTful Web services,
the semantic client processes machine-readable descriptions of the available ser-
vices. In the preceding section, we have shown that the WSMO-Lite service
model is a suitable abstraction for these descriptions. We proceed now to dis-
cuss their concrete syntax.

Public RESTful Web services are commonly described in human-oriented
documentation using the general-purpose Web hypertext language HTML. In
contrast to WS–∗ Web services, public RESTful services are rarely described
in a machine-readable format that could be annotated semantically to sup-
port SWS automation, despite the existence of languages such as WADL (see
Section 3.4.4). Therefore, in this section we propose a microformat (see Sec-
tion 3.4.2) that can mark up the machine-oriented pieces of information de-
scribed within the textual HTML documentation. With the microformat markup
in place, the information becomes machine-readable and can be annotated with
semantics.1

Still, while the majority of RESTful Web services only provides HTML
documentation, there are nevertheless some machine-readable (and machine-
oriented) descriptions of RESTful services and resources on the Web; we turn
our attention to such descriptions in Section 6.3.

1We have chosen to express the service description markup in microformats and not mi-
crodata (cf. Section 3.4.2) because the latter is a working draft in development, and because
microformats capture machine-oriented data in valid HTML without extensions.
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This section is structured as follows: Section 6.2.1 demonstrates how HTML
is used to describe RESTful Web services, Section 6.2.2 presents the hRESTS
microformat for identifying key pieces of the descriptions in a machine-readable
way, and Section 6.2.3 extends this microformat with SAWSDL-like semantic
annotations. Finally, in Section 6.2.4 we discuss how alternatively to using micro-
format syntax, we could use RDFa to encode the WSMO-Lite service structure
and semantic annotations in HTML service documentation.

6.2.1 Example HTML Description of a RESTful Web Ser-
vice

As already stated, public Web services generally come with HTML documen-
tation.2 Textual documentation in HTML is the prevalent form of Web API
descriptions, and in many cases it is the only one. Typically, such documenta-
tion will list the available operations (under various names such as API calls,
methods, commands etc.), their URIs and parameters, the expected output data,
any error conditions and so on; it is, after all, intended as the documentation of
a programmatic interface.

The following might be an excerpt of a typical operation description:

ACME Hotels service API
Operation getHotelDetails

Invoked using the method GET at http://example.com/h/{id}
Parameter: id - the identifier of the particular hotel
Output value: hotel details in an ex:hotelInformation document

Such documentation has all the details necessary for a human to be able to
create a client program that can use the service. This documentation can be
captured in HTML as shown in Listing 6.1. In order to tease out the technical
details (operations, addresses, HTTP methods, input and output data formats),
the HTML documentation needs to be amended in some way; in the following
subsection, we describe hRESTS, a microformat developed for this purpose.

1 <h1>ACME Hotels service API</h1>
2 <h2>Operation getHotelDetails</h2>
3

4 <p> Invoked using the method GET at http://example.com/h/{id} <br/>
5 <strong>Parameter:</strong>
6 <code>id</code> − the identifier of the particular hotel
7 <br/>
8 <strong>Output value:</strong> hotel details in an
9 <code>ex:hotelInformation</code> document

10 </p>

Listing 6.1: Example HTML service description

6.2.2 hRESTS: Service Model Microformat

The preceding section shows a typical HTML description of one operation of
a RESTful Web service. Here, we proceed to define hRESTS, a microformat

2Such as flickr.com/services/api and docs.amazonwebservices.com/AmazonSimpleDB/

2007-11-07/DeveloperGuide

http://example.com/h/{id}
flickr.com/services/api
docs.amazonwebservices.com/AmazonSimpleDB/2007-11-07/DeveloperGuide
docs.amazonwebservices.com/AmazonSimpleDB/2007-11-07/DeveloperGuide
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that adds machine-readable service model structure to such descriptions. Addi-
tionally, hRESTS identifies two key pieces of information about an operation:
the address (URI template) of the resource(s) on which the operation acts, and
the HTTP method represented by the operation. The information about an
operation’s address and method enables tool support for invocation. In effect,
hRESTS is analogous to WSDL, albeit much less detailed.

The hRESTS microformat is made up of a number of HTML classes that
correspond to the various parts of the WSMO-Lite service model:

• service specifies the description of the whole service,

• operation marks a single operation within that service,

• address defines the URI template for an operation,

• method defines the HTTP method for an operation,

• input marks a block describing the inputs of an operation,

• output does the same for the outputs, and

• label specifies a human-readable name of a service or of an operation.

Table 6.2 details the use of these classes (the last column specifies an RDF
mapping discussed below).

HTML class Target markup Children RDF counterpart

service block label,

operation,

address, method

wl:Service

operation block label, input,

output,

address, method

wl:Operation,
wl:hasOperation

input block — wl:Message,
wl:hasInputMessage

output block — wl:Message,
wl:hasOutputMessage

address textual
or hyperlink

— hr:hasAddress

method textual — hr:hasMethod

label textual — rdfs:label

Table 6.2: The HTML classes of the hRESTS microformat

Listing 6.2 shows the RDFS definition of the two invocation-information
properties (hr:hasMethod and hr:hasAddress, in the namespace http://www.

wsmo.org/ns/hrests#), which extend the RDFS schema for the WSMO-Lite
service model defined in Listing 4.1 (page 64):

hr:hasAddress (lines 8–10) is a property that links an operation with the re-
source URI template. There is currently no standard datatype for URI tem-
plates, therefore we introduce one on line 16.

hr:hasMethod (lines 11–13) is a property that links an operation with the
HTTP method that should be invoked on the target resource.

http://www.wsmo.org/ns/hrests#
http://www.wsmo.org/ns/hrests#
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1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
6

7 # added properties for wl:Operation
8 hr:hasAddress a rdf:Property ;
9 rdfs:domain wl:Operation ;

10 rdfs:range hr:URITemplate .
11 hr:hasMethod a rdf:Property ;
12 rdfs:domain wl:Operation ;
13 rdfs:range xsd:string .
14

15 # a datatype for URI templates
16 hr:URITemplate a rdfs:Datatype .

Listing 6.2: MicroWSMO extensions to the service model from Section 4.4

Listing 6.3 shows hRESTS annotations (in bold) in the HTML code of the
sample service description shown earlier.3 This listing helps us illustrate the
following detailed definitions of the hRESTS microformat classes themselves
and the structural constraints on hRESTS descriptions defined near the end of
this section.

1 <div class=”service” id=”svc”>
2 <h1><span class=”label”>ACME Hotels</span> service API</h1>
3 <div class=”operation” id=”op1”>
4 <h2>Operation <span class=”label”>getHotelDetails</span></h2>
5 <p> Invoked using the <span class=”method”>GET</span>
6 at <code class=”address”>http://example.com/h/{id}</code><br/>
7 <span class=”input”>
8 <strong>Parameter:</strong>
9 <code>id</code> − the identifier of the particular hotel

10 </span><br/>
11 <span class=”output”>
12 <strong>Output value:</strong> hotel details in an
13 <code>ex:hotelInformation</code> document
14 </span>
15 </p>
16 </div></div>

Listing 6.3: Example hRESTS service description

In the following detailed definitions, we refer to RDF classes and properties
from the service model from Section 4.4 (with the prefix wl), and the additional
properties defined in Listing 6.2 for invocation of RESTful services (with the
prefix hr).

The service class on block markup (e.g. <body>, <div>), as shown in List-
ing 6.3 on line 1, indicates that the contents of the element describe a service
API using the hRESTS microformat. An element with the class service corre-
sponds to an instance of wl:Service. A service contains one or more operations
and may have a label (see below).

3Note the added <div> and <span> blocks that add nested element structure to the de-
scription; they do not otherwise affect the presentation of the HTML documentation.
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The operation class, also used on block markup (e.g. <div>), indicates that
the element contains a description of a single Web service operation, as shown
in the listing on line 3. An element with this class corresponds to an instance of
wl:Operation, attached to its parent service with wl:hasOperation. An operation
description specifies the address and the method used by the operation, and
it may also contain description of the input and output of the operation, and
finally a label.

The address class is used on textual markup (e.g. <code>, shown on line 6,
or <abbr>) or on a hyperlink (<a href>) and specifies the URI of the operation,
or the URI template in case any inputs are URI parameters. Its value is attached
to the operation using hr:hasAddress. On a textual element, the address value
is in the content; on an abbreviation, the expanded form (the title of the
abbreviation) specifies the address; and on a hyperlink, the target of the link
specifies the address of the operation.

The method class on textual markup (e.g. <span>, shown on line 5) specifies
the HTTP method used by the operation. Its value is attached to the operation
using hr:hasMethod.

Both the address and the method may also be specified on the level of
the service, in which case these values serve as defaults for operations that do
not specify them. In absence of any explicit value for method, the default is
GET. The RDF form of the service model reflects the default values already
applied, that is, an instance wl:Service will never have either hr:hasMethod or hr:
hasAddress, while an instance of wl:Operation should always have both.

The input and output classes are used on block markup (e.g. <div> but also
<span>), as shown on lines 7 and 11, to indicate the description of the input
or output of an operation. Elements with these classes correspond to instances
of wl:Message, attached to the parent operation with wl:hasInputMessage and
wl:hasOutputMessage respectively. While hRESTS does not provide for further
machine-readable information about the inputs and outputs, extensions such as
MicroWSMO (cf. Section 6.2.3) and SA-REST [109] may add more properties
here.

In principle, the output data format can be self-describing through the meta-
data the client receives together with the operation response (self-description is
a major part of Web architecture, and the response message itself may contain
a pointer to a semantic lifting transformation), but it is, in general, useful for
API descriptions to specify what the client can expect; hence our output class.

The label class is used on textual markup to specify human-readable labels
for services and operations, as shown on lines 2 and 4 in the example listing.
The value is attached to the appropriate service or operation using rdfs:label.

Additionally, elements with the classes service or operation can carry an
id attribute, which is combined with the URI of the HTML document to form
the URI identifier of the particular service or operation. This will allow other
statements to directly refer to these instances.

The definitions above imply a hierarchical use of the classes within the el-
ement structure of the HTML documentation. The following is a complete list
of structural constraints on the hierarchy of elements marked up with hRESTS
classes. It reflects the structure of our service model, amended with the default-
ing of the address and method properties:

1. No XHTML element has two or more hRESTS classes at the same time.
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2. No element with the class service is a descendant4 of an element with
any hRESTS class.

3. Either there is no element with the class service in the document, or
every element with the class operation is a descendant of an element
with the class service.

4. No element with the class operation is a descendant of an element with
an hRESTS class other than service.

5. Every element with the class address, method or label is a descendant
of an element with either the class service or the class operation.

6. Every element with the class input or output is a descendant of an ele-
ment with the class operation.

7. An element with the class operation can only contain one descendant
element with the class input and one descendant element with the class
output.

8. No element with any of the classes address, method, input, output or
label is a descendant of an element with an hRESTS class other than
service and operation.

A single HTML document can define multiple services; such a document will
contain multiple elements with the class service.

Conversely, and this is a common occurrence, multiple documents can to-
gether make up the description of a single service. Indeed, textual service doc-
umentation is often split into a number of interlinked pages that describe the
service as a whole, the individual operations, data types, error conditions, spe-
cific authentication mechanisms etc. In such cases, the Web page describing an
operation (or a group of operations) will not contain any element with the class
service because it is described elsewhere. The documents that together make
up the service description should contain metadata links pointing to the first
document in the set (rel="start" as defined by HTML [45]) and to the docu-
ments that make up the set (rel="section") — such links can help a crawler
to find related pieces of the service description.

Such a situation is illustrated in Figure 6.4, which shows an overview page
on the left that talks about the service as a whole, and three pages on the right
that describe one operation each. The start and section relation links tie the
pages together, which can be interpreted in our RDF model as a description of
a single service with three operations.

As a consequence, a Web page pointed to by a link with rel="start" should
contain only a single element with the class service so that the assignment of
the operations to the service is unambiguous.

The next subsection contains an example of HTML semantically annotated
with hRESTS and it shows the RDF data generated from such HTML by a
hRESTS parser (cf. Section 8.2.2).

4The term descendant is defined for XML/HTML elements in XPath [141].
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op1.html

div class=operation

body

head

link rel=start

div class=service

body

link rel=section

link rel=section

link rel=section

head

index.html

Figure 6.4: Service description in multiple documents

6.2.3 MicroWSMO Sem. Annotations: an Extension of
hRESTS

The hRESTS microformat structures the HTML documentation of RESTful
Web services so they are amenable to machine processing. The microformat iden-
tifies key pieces of information that are already present in the documentation,
effectively creating an analogue of the machine-readable WSDL descriptions for
WS–∗ services. hRESTS forms the basis for further extensions, where service
descriptions are annotated with added information to facilitate further process-
ing. In this section, we present an extension of hRESTS called MicroWSMO
(“Microformat for WSMO-Lite”5), which adds semantic annotations; another
extension is SA-REST [109, 33], which adds information for faceted browsing
and discovery of services by client developers.

Similarly to how SAWSDL is a layer for semantic annotations of WSDL
(the machine-readable service description language with support in development
tools), also MicroWSMO is a layer for semantic annotations of hRESTS (the
service description microformat that aims to provide for development tool sup-
port). Because the hRESTS view of services (Section 6.1.2) is so similar to that
of WSDL, MicroWSMO can adopt SAWSDL-style properties to add semantic
annotations conforming to the WSMO-Lite service ontology. See Section 4.3.3
for information about our use of the SAWSDL properties in our model of service
semantics.

SAWSDL annotations are URIs that identify semantic concepts and data
transformations. The annotation URIs can be added to the HTML documen-
tation of RESTful services in the form of hypertext links. HTML [45] defines a
mechanism for indicating the relation represented by a hyperlink; the relation
is specified in the rel attribute. Along with class, the rel attribute is also
commonly used by microformats.

In accordance with SAWSDL, MicroWSMO consists of the following three
types of link relations:

• model indicates that the link is a model reference,

• lifting and lowering then denote links to the respective data transfor-
mations.

Listing 6.4 illustrates the use of these link relations on semantic annotations
added to the hRESTS description from Listing 6.3.

In the following detailed definitions, we use the prefix sawsdl to refer to the
SAWSDL RDF properties included in the service model in Section 4.4.

5MicroWSMO is so named for historical reasons; a more direct name “SA-hRESTS” would
be confusingly close to SA-REST [109]; and another alternative, “MicroSAWSDL”, would
imply close ties with WSDL, which would be undesirable with RESTful services.
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1 <div class=”service” id=”svc”>
2 <h1><span class=”label”>ACME Hotels</span> service API</h1>
3 <p>This service is a
4 <a rel=”model” href=”http://example.com/ecommerce/hotelReservation”>
5 hotel reservation</a> service.
6 </p>
7 <div class=”operation” id=”op1”>
8 <h2>Operation <span class=”label”>getHotelDetails</span></h2>
9 <p> Invoked using the <span class=”method”>GET</span>

10 at <code class=”address”>http://example.com/h/{id}</code><br/>
11 <span class=”input”>
12 <strong>Parameter:</strong>
13 <a rel=”model” href=”http://example.com/data/onto.owl#Hotel”>
14 <code>id</code></a> − the identifier of the particular hotel
15 (<a rel=”lowering” href=”http://example.com/data/hotelID.xsparql”>
16 lowering</a>)
17 </span><br/>
18 <span class=”output”>
19 <strong>Output value:</strong> hotel details in an
20 <code>ex:hotelInformation</code> document
21 </span>
22 </p>
23 </div></div>

Listing 6.4: Example MicroWSMO semantic description

The model link relation, on a hyperlink present within an hRESTS service,
operation, input or output block, specifies that the link is a model reference
(sawsdl:modelReference in the RDF mapping) from the respective component to
its semantic description. We can directly apply WSMO-Lite annotations here,
as discussed in Section 4.3.3 and summarized in Table 4.2.

Listing 6.4 shows the use of the model link relation on lines 4 and 13. Line 4
specifies that the service does hotel reservations (the URI would identify a cat-
egory in some classification of services), and line 13 defines the input of the
operation to be an instance of the class Hotel, which would be a part of the
service’s data ontology.

The lifting and lowering link relations, on hyperlinks present within
hRESTS input or output blocks (mapping to the RDF properties sawsdl:lift-
ingSchemaMapping and sawsdl:loweringSchemaMapping), specify that the links
point to the respective data transformations between the knowledge representa-
tion format of the service’s data ontology and the wire syntax of the messages
of the service. Section 6.4 discusses issues of data lifting and lowering transfor-
mations in the context of RESTful services.

Listing 6.4 shows a link to a lowering transformation on line 15. The trans-
formation would presumably map a given instance of the class Hotel into the
ID that the service expects as a URI parameter.

Finally, Listing 6.5 shows the RDF data that can be extracted from the
example MicroWSMO description from Listing 6.4, using the GRDDL XSLT
transformation defined in Section 8.2.2.

As shown in this section, MicroWSMO allows HTML service documentation
to be annotated with service semantics in the same way that WSDL is annotated
with SAWSDL. The RDF data parsed from hRESTS and MicroWSMO has the
same structure as the RDF data obtained from WS–∗ descriptions as described
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1 @prefix ex: <http://example.com/serviceDescription.html#> .
2 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
5 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
6

7 ex:svc a wl:Service ;
8 rdfs:isDefinedBy <http://example.com/serviceDescription.html> ;
9 rdfs:label ”ACME Hotels” ;

10 sawsdl:modelReference <http://example.com/ecommerce/hotelReservation> ;
11 hr:hasOperation ex:op1 .
12 ex:op1 a wl:Operation ;
13 rdfs:label ”getHotelDetails” ;
14 hr:hasMethod ”GET” ;
15 hr:hasAddress ”http://example.com/h/{id}”ˆˆhr:URITemplate ;
16 wl:hasInputMessage [
17 a wl:Message ;
18 sawsdl:modelReference <http://example.com/data/onto.owl#Hotel> ;
19 sawsdl:loweringSchemaMapping <http://example.com/data/hotelID.xsparql>
20 ] ;
21 wl:hasOutputMessage [
22 a wl:Message ;
23 ] .

Listing 6.5: RDF data extracted from Listing 6.4

in Table 5.2, and illustrated in Figure 5.2. Thus we can treat RESTful services
just like WS–∗ services and provide the same level of semantic automation, as
discussed in the later chapters of this thesis.

6.2.4 RDFa: an alternative to hRESTS and MicroWSMO

Alternatively to introducing microformats to capture the service model struc-
ture and semantic annotations in the HTML documentation of RESTful Web
services, we could also employ RDFa (see Section 3.4.2) and use the RDF-based
WSMO-Lite service model directly. RDFa specifies a collection of generic XML
attributes for expressing arbitrary RDF data inside HTML.

Since our service description data is ultimately processed as RDF, RDFa
would be directly applicable. In our case, the difference between the use of a
microformat or RDFa boils down to several considerations:

• the microformat syntax is simpler and more compact than RDFa;

• HTML marked up with our microformat remains valid HTML, whereas
RDFa currently only validates against the newest schemas;

• RDFa represents the full concept URIs and thus facilitates the coexistence
of multiple data vocabularies in a single document, where microformats
may run into naming conflicts;

• processing microformats requires vocabulary-specific parsers (such as our
XSLT transformation mentioned in Section 6.2.2), while parsing the RDF
data from RDFa is independent from any actual data vocabularies;

• RDFa cannot support domain-specific syntactic shortcuts such as a service
automatically getting an rdfs:isDefinedBy property linking back to the
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1 <div typeof=”wl:Service” about=”#svc”
2 xmlns:wl=”http://www.wsmo.org/ns/wsmo−lite#”
3 xmlns:sawsdl=”http://www.w3.org/ns/sawsdl#”
4 xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”>
5 <span rel=”rdfs:isDefinedBy” resource=”” />
6 <h1><span property=”rdfs:label”>ACME Hotels</span> service API</h1>
7 <p>This service is a
8 <a rel=”sawsdl:modelReference”
9 href=”http://example.com/ecommerce/hotelReservation”>

10 hotel reservation</a> service.
11 </p>
12 <div rel=”wl:hasOperation”><div typeof=”wl:Operation” about=”#op1”>
13 <h2>Operation <code property=”rdfs:label”>getHotelDetails</code></h2>
14 ...

Listing 6.6: Example service description with RDFa annotations

service description, or the defaulting of address and method properties
from a service to its operations;

• RDFa can be used to embed not only hRESTS and SAWSDL properties,
but also any other RDF data (cf. Section 6.6).

We illustrate the RDFa form of the WSMO-Lite service model with SAWSDL
annotations (instead of the hRESTS/MicroWSMO microformats) with a brief
snippet in Listing 6.6, highlighting the differences from Listing 6.4. The RDFa
form uses XML namespaces to distinguish vocabularies, and it uses the at-
tributes typeof, about, rel, resource, and property (among others) to ex-
press any RDF content.

6.3 Other Technologies for Describing RESTful
Services

Even though most of the prominent public RESTful Web services are indeed
only described in HTML documentation, there are also instances of machine-
processable service description formats. Some are application-specific, such as
the Service Document format introduced by the Atom Publishing Protocol or
the OpenSearch Description Document (both formats are described in Sec-
tion 3.4.3); others are general description formats6 such as WADL (cf. Sec-
tion 3.4.4) that aim to capture the details of the syntactic contract of a set of
Web resources. Even Web hyperlinks and forms can be interpreted as limited
syntactic contract descriptions of Web resources.

While a comprehensive survey of such Web service description approaches
is out of scope of this thesis, in this section we select representative examples
and we show that the service descriptions can be transformed to our service
model, and that either SAWSDL or hRESTS/MicroWSMO can be adopted
to add semantic annotations and thus to integrate these service description
approaches (and the underlying services and resources) into our lightweight
semantic automation system.

6http://pacificspirit.com/Authoring/REST/ is one list of such description languages.

http://pacificspirit.com/Authoring/REST/
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WSDL 2.0 can also be used to describe RESTful services — its potential
limitations in this application are the topic of ongoing debates in the community
around RESTful Web services.7 Inasmuch as WSDL 2.0 can describe RESTful
Web services, it can be annotated with SAWSDL and WSMO-Lite as shown in
Chapter 5 of this thesis.

Below in Section 6.3.1, we discuss the application of SAWSDL and WSMO-
Lite to WADL. In Section 6.3.2, we apply SAWSDL and WSMO-Lite to Atom-
Pub Service Documents — an example current and standardized application-
specific service description format. Finally, in Section 6.3.3 we analyze how Web
hyperlinks and forms can be interpreted as service descriptions and how the
hRESTS and MicroWSMO microformats can be utilized to extend them with
further structural and semantic annotations.

6.3.1 Web Application Description Language (WADL)

In Section 3.4.4, we described the Web Application Description Language, a
generic RESTful service description format that has slowly gained certain trac-
tion, stronger than any other such approach that we have seen. Here we show
how it fits within our service description approach and how it can be annotated
with service semantics.

The top-level concept of WADL is an application. WADL describes an ap-
plication as a set of resources. For each resource, WADL captures its address as
a URI template, and the methods that are available on the resource. For every
method, WADL identifies the request (input) parameters, and the request and
response (input and output) data formats. WADL can even point out pieces
of data that serve as links to other resources and thus describe the hypertext
structure of the application.

The structure of WADL descriptions very clearly fits our functional model
of RESTful services, illustrated in Figure 6.1. A WADL application corresponds
to our term Web service, and a method on a resource corresponds to our term
operation.

In our semantic service descriptions, we put semantic annotations on the Web
service, on its operations and on their inputs and outputs. A WADL service de-
scription can be annotated in a straightforward way with SAWSDL attributes
and WSMO-Lite semantics (applied to WSDL in Chapter 5). To specify func-
tional and nonfunctional semantics of a service, we can put a modelReference on
the top-level wadl:application element. Behavioral semantics are specified by
putting modelReferences with functional annotations on wadl:method elements.
And finally, the information model semantics are specified with modelReference,
liftingSchemaMapping and loweringSchemaMapping inside the wadl:request or
wadl:response element structure. This is shown in Table 6.3, modeled after
Table 5.1.

In effect, WADL accepts the same annotations as WSDL, with the same
function. In addition, since WADL describes RESTful services, the semantics of
HTTP operations and hyperlinking can also be taken into account; we describe
the semantics inherent in RESTful services later in Section 6.5.

7http://jonathanmarsh.net/2008/09/15/mapping-rest-services-to-operations/ and
http://sanjiva.weerawarana.org/2008/09/blog-on-describing-rest-with-wsdl-20.html

are blog posts that illustrate the ongoing debates; also see the links in those posts.

http://jonathanmarsh.net/2008/09/15/mapping-rest-services-to-operations/
http://sanjiva.weerawarana.org/2008/09/blog-on-describing-rest-with-wsdl-20.html
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Sem. type WSMO-Lite svc. model WADL component

F Service Application

N Service Application

B Operation Method

I Message Request, response,
param, representation,
XS element decl.
or type definition

Table 6.3: WSMO-Lite annotations in WADL

Optimally, providers of RESTful Web services would adopt a language such
as WADL and use it to publish machine-readable descriptions of their services, as
this would stimulate the development of tools that simplify client-side code.8 We
have demonstrated here that if a language such as WADL does gain adoption,
our semantic service automation approach can be applied to this language in a
straightforward fashion.

6.3.2 AtomPub Service Document

In Section 3.4.3, we described the Atom Publishing Protocol, along with the
structure of the AtomPub Service Document format. To recapitulate it quickly,
an AtomPub Service Document describes a single service, which consists of one
or more workspaces, each made up of one or more collections.

The Atom Publishing Protocol defines operations available on collections,
but it does not define any operations on services and workspaces, nor does it
specify any relationship between collections inside a single workspace, or be-
tween the workspaces of a single service. Therefore, an AtomPub collection can
be seen as an independent Web service with well-known publication function-
ality. We can translate any AtomPub collection description into an instance of
wl:Service, with operations as described below. To avoid confusion with the top-
level AtomPub service concept, the rest of this section uses the word “service”
exclusively to refer to the Web service that is a single AtomPub collection.

The Atom Publishing Protocol defines the functionality of collection ser-
vices; we introduce a WSMO-Lite functionality category cat:AtomPubCollection
that captures the functional semantics of these services — in other words, the
instance of wl:Service that is generated for an AtomPub collection will have a
modelReference that points to the category AtomPubCollection. Publications that
extend or restrict the Atom Publishing Protocol may advertise these modifica-
tions by putting additional category URI(s) in a sawsdl:modelReference attribute
on the appropriate app:collection element inside the Service Document.

Listing 6.7 shows an example AtomPub Service Document (adopted from
Listing 3.1) that indicates (on line 7 using the hypothetical extension category
RewritableCollection) that the collection can be rewritten as a whole.

An AtomPub collection service may also advertise its nonfunctional proper-
ties (cf. Chapter 4), likewise using the sawsdl:modelReference attribute on the
app:collection element, as shown in the listing on line 8.

8For instance, wadl2java (https://wadl.dev.java.net/wadl2java.html) generates client-
side stubs to replace the need to deal with raw HTTP. Such tools in a limited form could also
be developed for hRESTS; this is, however, out of scope for this thesis.

https://wadl.dev.java.net/wadl2java.html
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1 <service xmlns=”http://www.w3.org/2007/app” xmlns:atom=”http://www.w3.org/2005/
Atom”

2 xmlns:sawsdl=”http://www.w3.org/ns/sawsdl#”>
3 <workspace>
4 <atom:title>Main Site</atom:title>
5 <collection href=”http://example.org/blog/main”
6 sawsdl:modelReference=”
7 http://example.com/atompub#RewritableCollection
8 http://example.com/blog/meta#pricing” >
9 <atom:title>My Blog Entries</atom:title>

10 <categories href=”http://example.com/cats/forMain.cats” />
11 <accept>application/atom+xml;type=entry</accept>
12 </collection>
13 </workspace>
14 </service>

Listing 6.7: Example semantically-annotated AtomPub Service Document

The Atom Publishing Protocol standard prescribes the operations that are
available on the two types of resources (collections and entries) it defines; on a
collection the operations are

• list collection entries,

• submit a new collection entry;

and on an entry they are

• retrieve an entry,

• update an entry,

• delete an entry.

These five operations are available on all AtomPub services. As shown in
Listing 6.8, we can generate the respective five wl:Operation instances together
with the HTTP method information for each of them, and with the concrete
address for the collection operations. The URIs of the entries are determined by
the service and linked from the collection; therefore the address URI template
for the entry operations is the whole URI as a template parameter (lines 41, 56,
70). The data-retrieval operations (list collection entries, retrieve an entry) are
also marked to be safe (lines 19 and 43).

The information model of the Atom Publishing Protocol service is the Atom
Syndication Format, whose schema can easily be translated into an ontology.
Creating such an ontology is out of scope of this thesis; however, Listing 6.8
shows message annotations (e.g. lines 31, 36) using terms that would likely
occur in an ontology for Atom and AtomPub, together with example lifting and
lowering mapping pointers (e.g. lines 32, 37).

To summarize, we can transform an AtomPub Service Document into a
WSMO-Lite description, with specific annotations describing the functionality
and the nonfunctional properties of a particular publication.

Just as AtomPub service documents can be annotated with SAWSDL and
viewed as a well-known type of RESTful Web services, we can expect to be able
to apply annotations on other standardized application-specific service descrip-
tions, and make whole classes of services amenable to semantic automation.
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1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
4 @prefix wsdlx: <http://www.w3.org/ns/wsdl−extensions#> .
5 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
6 @prefix wlx: <http://www.wsmo.org/ns/wsmo−lite−extensions#> .
7 @prefix wlxt: <http://www.wsmo.org/ns/wsmo−lite−extensions/transform/> .
8

9 <http://example.org/blog/main> a wl:Service ;
10 rdfs:label ”My Blog Entries” ;
11 sawsdl:modelReference <http://example.com/atompub#RewritableCollection>,
12 <http://example.com/blog/meta#pricing> ;
13 wl:hasOperation :listEntries, :submitEntry, :getEntry, :updateEntry, :

deleteEntry .
14

15 :listEntries a wl:Operation ;
16 rdfs:label ”List collection entries” ;
17 hr:hasAddress ”http://example.org/blog/main”ˆˆhr:URITemplate ;
18 hr:hasMethod ”GET” ;
19 sawsdl:modelReference wsdlx:SafeInteraction ;
20 wl:hasOutputMessage [
21 a wl:Message ;
22 sawsdl:modelReference wlx:AtomCollection ;
23 sawsdl:liftingSchemaMapping wlxt:atomlifting.xslt ;
24 ] .
25 :submitEntry a wl:Operation ;
26 rdfs:label ”Submit a new entry” ;
27 hr:hasAddress ”http://example.org/blog/main”ˆˆhr:URITemplate ;
28 hr:hasMethod ”POST” ;
29 wl:hasInputMessage [
30 a wl:Message ;
31 sawsdl:modelReference wlx:AtomEntry ;
32 sawsdl:loweringSchemaMapping wlxt:atomlowering.xslt ;
33 ] ;
34 wl:hasOutputMessage [
35 a wl:Message ;
36 sawsdl:modelReference wlx:AtomEntry, wlx:AtomEntryCreationConfirmation ;
37 sawsdl:liftingSchemaMapping wlxt:atomlifting−submit.xslt ;
38 ] .
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39 :getEntry a wl:Operation ;
40 rdfs:label ”Retrieve an entry” ;
41 hr:hasAddress ”{entryURI}”ˆˆhr:URITemplate ;
42 hr:hasMethod ”GET” ;
43 sawsdl:modelReference wsdlx:SafeInteraction ;
44 wl:hasInputMessage [
45 a wl:Message ;
46 sawsdl:modelReference wlx:AtomEntry ;
47 sawsdl:loweringSchemaMapping wlxt:atomlowering−uri.xslt ;
48 ] ;
49 wl:hasOutputMessage [
50 a wl:Message ;
51 sawsdl:modelReference wlx:AtomEntry ;
52 sawsdl:liftingSchemaMapping wlxt:atomlifting.xslt ;
53 ] .
54 :updateEntry a wl:Operation ;
55 rdfs:label ”Update an entry” ;
56 hr:hasAddress ”{entryURI}”ˆˆhr:URITemplate ;
57 hr:hasMethod ”PUT” ;
58 wl:hasInputMessage [
59 a wl:Message ;
60 sawsdl:modelReference wlx:AtomEntry ;
61 sawsdl:loweringSchemaMapping wlxt:atomlowering−uri−body.xslt ;
62 ] ;
63 wl:hasOutputMessage [
64 a wl:Message ;
65 sawsdl:modelReference wlx:AtomEntryUpdateConfirmation ;
66 sawsdl:liftingSchemaMapping wlxt:atomlifting−update.xslt ;
67 ] .
68 :deleteEntry a wl:Operation ;
69 rdfs:label ”Delete an entry” ;
70 hr:hasAddress ”{entryURI}”ˆˆhr:URITemplate ;
71 hr:hasMethod ”DELETE” ;
72 wl:hasInputMessage [
73 a wl:Message ;
74 sawsdl:modelReference wlx:AtomEntry ;
75 sawsdl:loweringSchemaMapping wlxt:atomlowering−uri.xslt ;
76 ] ;
77 wl:hasOutputMessage [
78 a wl:Message ;
79 sawsdl:modelReference wlx:AtomEntryDeletionConfirmation ;
80 sawsdl:liftingSchemaMapping wlxt:atomlifting−delete.xslt ;
81 ] .

Listing 6.8: Representation of the example from Lst. 6.7 in our service model
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6.3.3 Links and Forms

The Web is made up of a tremendous number of resources, most of them ori-
ented for direct human use and interaction through a Web browser. There are,
nevertheless, many machine-oriented resources, some of which are explicitly des-
ignated as parts of RESTful Web services (or Web APIs). The preceding content
of this chapter has discussed how these resources can be described in a machine-
processable format with semantic annotations. The Web also contains many
machine-oriented resources that are not designated as Web services, probably
mainly because their providers have not considered them as such.

Examples of such resources include simple machine-oriented data sources,
such as financial data or weather information in an XML format, dictionary
translation etc., or even services with effects other than serving information,
ranging from simple mailing list subscription/unsubscription interfaces even to
applications such as online banking.

Some of these potential9 Web services are made available with HTML forms,
and even with HTML hyperlinks (cf. Section 3.4.2) in the case of the simplest
data sources with no query or filtering functionality. In this section, we describe
how the hRESTS and MicroWSMO microformats can also be used to describe
such resources as RESTful Web services.

In the description of our example service in Section 6.1.1, we have already
mentioned forms and hyperlinks. This is a natural terminology when discussing
Web applications, including RESTful Web services. In the example service, the
operation listMyBookings() is a simple link to the “my bookings” resource, which
retrieves the list of the bookings of the current user who is identified by an
authentication mechanism. The rate-search operation search(date,city) can nat-
urally be represented with a form with two input fields, one for the date and
one for the desired location. (Usually the user interface will be more complex,
we simplify the example for brevity, without loss of generality.) Note that if the
description of listMyBookings() contains said hyperlink, or if the description of
search(date,city) contains said form, the developer reading the description can
easily test the operations by simply clicking the link or filling-in and submitting
the form.

An HTML form or a hyperlink can be taken as a service description (with a
single operation). A link specifies that there is a resource at the given address,
and that it can be expected to return useful data when the HTTP method
GET is invoked on it. A form specifies the address, the HTTP method (HTML
forms only support GET and POST, while XForms [137] support all the HTTP
methods), and the input parameters in the fields of the form. Table 6.4 shows
that in comparison to hRESTS, forms and hyperlinks only lack the notions of
service, labels, and any description of the expected outputs.

In order to accommodate semantic annotations of all four kinds of semantics,
we need to embed HTML forms and links in the complete hRESTS structure.
Hyperlinks can already be used to provide the address of an operation, therefore
hRESTS can be used as-is to describe hyperlinks that point to machine-oriented
data resources as RESTful Web services. To be able to incorporate forms, the
microformat needs one extension, defined in the paragraph below:

9They are machine-oriented services, but their providers do not designate them as Web
services.
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service operation address method input output label

hRESTS • • • • • • •
hyperlinks • • • N/A

forms • • • •

Table 6.4: WSMO-Lite annotations in WADL

The input class can also be used on forms (<form>). The form’s action at-
tribute specifies the address of the enclosing operation, and the method attribute
specifies the operation’s method. The various input fields of the form describe
the input of the operation. The enclosing operation may further contain a block
with the class output which describes the response expected when the form is
submitted.

While we have defined here how hyperlinks and forms that point to machine-
oriented resources can be annotated with hRESTS and MicroWSMO, this sup-
port is currently largely theoretical. Beyond the scope of this thesis, as part
of future work, we may attempt to crawl the Web and identify those machine-
oriented resources, and then we can evaluate whether efforts should be spent on
annotating those links and forms, or whether it would be better to document
the resources as Web APIs and apply hRESTS to the resulting documentation.

6.4 Data Lifting and Lowering

In Section 5.1.5, we have discussed data lifting and lowering in context of WSDL-
described Web services. Since the prevalent protocol used by these services,
SOAP, wraps an XML payload, the lifting and lowering transforms straightfor-
wardly between semantic data (generally in RDF) and XML. RESTful services,
on the other hand, present three complicating factors for lifting and lowering:

1. XML is not as prevalent in RESTful services as it is in WS–∗ services,
therefore lifting and lowering needs to take into account diverse data for-
mats, including form data serialization and JSON (cf. Section 3.2.2).

2. The input data of RESTful service operations is not necessarily transmit-
ted in a single document; instead, there may be URI template parameters,
query parameters, and for some methods also the request body (called re-
quest entity in HTTP).

3. The meaning of the response data (the response entity) of RESTful ser-
vice operations depends on the response status code, since faults are not
transferred as entity data.

To deal with the diversity of the data formats (the first problem), a lift-
ing/lowering engine must support sufficiently expressive transformation lan-
guages. XSPARQL (cf. Section 3.5.4) can be used if the target format is textual
or XML. Alternatively, JavaScript10 can be used as well, if the engine provides
a suitable API for reading and creating semantic data. JavaScript would be
especially suitable for textual structured target formats such as JSON (cf. Sec-
tion 3.2.2).

10https://developer.mozilla.org/en/JavaScript

https://developer.mozilla.org/en/JavaScript
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1 <mw:requestData>
2 <mw:templateParam name=”{parameter name}” value=”{parameter value}”/> ∗
3 <mw:queryParam name=”{parameter name}” value=”{parameter value}”/> ∗
4 <mw:body mediaType=”{media type}”> ?
5 {content as described in the text, dependent on the media type}
6 </mw:body>
7 <mw:formInput name=”{parameter name}” value=”{parameter value}”/> ∗
8 </mw:requestData>

Listing 6.9: MicroWSMO Request Data Format for Output of Lowering

In case different transformation languages are suitable but not generally
supported, MicroWSMO (and SAWSDL) allows multiple lowering (resp. lift-
ing) transformations to be specified on a single input (resp. output) message, to
provide equivalent alternatives. A lifting/lowering engine can choose any of the
provided transformations based on factors such as the language in which the
transformation is written, or the run-time availability of the actual lifting/low-
ering file.

To deal with the second problem, that of fragmenting the input data into
URI parameters and the body entity in the lowering transformation, we define
a special XML format, shown in Listing 6.9, to represent the result of lowering.
The root of the format is the element <mw:requestData>.11

In case the input of the operation is described as an HTML form, the ele-
ment <mw:requestData> contains an ordered list of <mw:formInput> elements,
each of which describes the value of a single input field in the form. No two
<mw:formInput> elements can have the same value of the name attribute. The
final serialization of this data then follows the rules of the form, as defined in
HTML [45]. A form with the method GET will put all the input form field data
in URI query parameters, whereas a form with the method POST will serialize
the input data in the request entity, usually with the media type application/x-
www-form-urlencoded.

For operations whose input is not described as a form, the <mw:requestData>
element may contain any number of values for the parameters of the URI tem-
plate address of the operation (using the element <mw:templateParam>); any
number of values to be added to the URI as query parameters (using the element
<mw:queryParam>), and optionally a single element <mw:body> that contains the
request entity. All these child elements can be present in the <mw:requestData>
root element in any order. No two <mw:templateParam> elements can have the
same value of the name attribute. The <mw:queryParam> elements are processed
in the order in which they appear, appending the name/value pairs to the query
component of the operation’s address URI.

To accommodate diverse data formats, the content of the <mw:body> ele-
ment is dictated by the mediaType attribute: for textual media types (text/*),
the <mw:body> must only contain text (which must be escaped to avoid con-
flicts with XML syntax, e.g. using a CDATA section). For XML media types
(application/xml and application/*-xml, see [139]), the <mw:body> must
only contain a single XML element child, which will be the root element of the
resulting request entity. For any other media types, the content of <mw:body>

must be the binary form of the request entity, encoded into text using Base 64 [8].

11The prefix mw: stands for the namespace http://www.wsmo.org/ns/microwsmo#.

http://www.wsmo.org/ns/microwsmo#
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1 <mw:responseData>
2 <mw:status code=”{3−digit integer}”/>
3 <mw:body mediaType=”{media type}”> ?
4 {content as described in the text, dependent on the media type}
5 </mw:body>
6 </mw:responseData>

Listing 6.10: MicroWSMO Response Data Format for Lifting

Finally, to deal with the third problem (dependence of the meaning of the
results on the response status code), we define an XML format to represent
the response data and to serve as the input to lifting. The format is shown in
Listing 6.10.

The root of the format is <mw:responseData>. It has only two child elements:
<mw:status> captures the status code of the HTTP response (a 3-digit number,
e.g. 200 for success, 500 for a server-side error etc.), and <mw:body> contains
the response entity. The format of the body element is the same as above in the
request data.

In summary, the lifting and lowering transformations in MicroWSMO do
not work on the raw message data; instead they use a simple representation of
the HTTP messages so that the significant parts of the HTTP messages are
exposed, while the lifting and lowering transformations are still shielded from
the full complexity of HTTP messages.

6.5 Semantics Inherent in RESTful Web Ser-
vices

HTTP, as an application protocol, defines a uniform interface with a prescribed
meaning that all Web resources, including RESTful services, are expected to
follow. The definitions of HTTP methods can be reflected in a functionality
taxonomy, which we can use to automatically add functional descriptions of
the operations of RESTful services. This section defines this HTTP method
functionality taxonomy and its uses.

As described in Section 3.2.4, the HTTP specification [49] defines eight meth-
ods: GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE and CON-
NECT. Only the first six are generally useful in RESTful services; TRACE
is mostly used for debugging purposes, and CONNECT is used for tunneling
different protocols through HTTP.

Most HTTP methods have well-defined limited functionality: GET serves for
data retrieval, HEAD retrieves only the HTTP metadata of a resource (used es-
pecially for cache validation), PUT replaces the contents of a resource, DELETE
removes a resource, and OPTIONS checks the communication options of a re-
source (for instance, the allowed HTTP methods). All these five methods are
defined as idempotent — the effect of invoking one of these methods multiple
times in a sequence is the same as invoking the method only once. Additionally,
GET, HEAD and OPTIONS are safe methods (as defined in Section 3.2.4), i.e.,
they are not supposed to have any application-significant side effects.

In contrast to the above methods, POST is a general-purpose method whose
functionality is unconstrained. This makes it possible to implement any kind
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1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix wsdlx: <http://www.w3.org/ns/wsdl−extensions#> .
4 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
5

6 hr:HttpMethod a wl:FunctionalClassificationRoot .
7 hr:IdempotentMethod rdfs:subClassOf hr:HttpMethod .
8 wsdlx:SafeInteraction rdfs:subClassOf hr:IdempotentMethod .
9 hr:ReplaceResource rdfs:subClassOf hr:IdempotentMethod .

10 hr:DeleteResource rdfs:subClassOf hr:IdempotentMethod .

Listing 6.11: Functional Classification of HTTP Methods

of functionality in Web sites, as exemplified by the use of HTTP POST to
transport SOAP messages with any purpose.

Listing 6.11 shows a functionality classification for the constrained HTTP
methods. The class HttpMethod is the root of this classification with one direct
subclass, IdempotentMethod which groups all the idempotent operations (cur-
rently all the five constrained HTTP methods). The class wsdlx:SafeInteraction,
imported from WSDL 2.0, groups the three methods that are safe, which are in-
formation retrieval operations further differentiated by their inputs and outputs;
and the classes ReplaceResource and DeleteResource then identify the remaining
two methods PUT and DELETE.

This functional classification has two uses: first, we can automatically at-
tach the classes as functional descriptions of service operations, contributing
to the behavioral semantics of the service; and second, the classes can be used
explicitly on service operations to indicate their functionality, for instance when
the method POST on some particular resource is safe, idempotent, or when it
replaces PUT or DELETE.12

Table 6.5 summarizes the model references that can be automatically at-
tached to hRESTS operations depending on the HTTP method. These anno-
tations make the HTTP method semantics available to WSMO-Lite semantic
clients.

A MicroWSMO parser should automatically attach these model references.
However, a small number of Web APIs use HTTP GET to perform side ef-
fects, such as deleting an item from a container or confirming mailing list un-
subscription. While such misuse is recognized as erroneous, Web search engine
crawlers and Web accelerator programs have been using server-provided restric-
tions (robots.txt) and heuristics (such as the presence of URI parameters
after ’?’) to guess whether GET will be safe on a given URI, limiting their reach
to avoid unintended consequences for broken Web applications. Such heuristics
can also be built into a MicroWSMO parser so that the wsdlx:SafeInteraction
model reference would only be attached to operations whose address is judged
as safe. However, the investigation of such heuristics is out of scope of this thesis.

12HTML forms only support GET and POST, therefore some services use POST where
PUT or DELETE could be more appropriate.
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Method Automatically attached model reference

GET wsdlx:SafeInteraction

HEAD wsdlx:SafeInteraction

OPTIONS wsdlx:SafeInteraction

PUT hr:ReplaceResource

DELETE hr:DeleteResource

Table 6.5: Semantics Inherent in HTTP Methods

6.6 Deployment of Semantic Descriptions

The two microformats defined in this chapter, hRESTS and MicroWSMO, en-
able semantic annotations in HTML documentation of RESTful Web services.
These annotations, however, merely identify semantic concepts by URIs, iden-
tically to SAWSDL annotations in WSDL, as discussed in Section 5.3. The
semantic client must be able to access the semantic definitions of these concepts
(usually in the form of ontologies), and there are two main options for where
the ontologies can be deployed:

1. The ontologies are available publicly on the Web, alongside the HTML
documentation. See Section 5.3.2 for a brief discussion of this deployment
strategy. Since the service documentation is already presumably on the
Web, it is natural that the semantic concept definitions should be available
likewise.

2. Some concept definitions can be embedded in the HTML documentation
of the service, for example using RDFa (see Sections 3.4.2 and 6.2.4). This
is particularly suitable for small pieces of semantic definitions limited in
applicability to a particular service — for instance the service precondi-
tions and effects. Using GRDDL to extract the MicroWSMO and hRESTS
data, the added concept definitions will automatically become part of the
resulting service description RDF graph.13

Naturally, the options can be combined: for instance, a reusable service
functionality taxonomy can be available publicly on its Web site, whereas the
service-specific definitions, such as the preconditions, effects, and nonfunctional
properties, could be embedded as RDFa in the HTML documentation.

6.7 Validation of MicroWSMO/hRESTS Files

As discussed in Section 5.4, it is useful to define validation rules for formal
languages of any kind. Section 5.4.1 defines four facets of validity:

• syntax,

• consistency,

• completeness,

• correctness.

13A GRDDL transformation for RDFa is available via http://ns.inria.org/grddl/rdfa/

http://ns.inria.org/grddl/rdfa/
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In contrast to WSMO-Lite, where syntactical validity falls on the level
of XML, XML Schema and validation rules defined by the WSDL standard,
hRESTS and MicroWSMO syntactical validity has two levels:

• HTML and XHTML are defined using DTDs and XML Schemas. How-
ever, the Web has been known to work well with formally invalid HTML
documents, and HTML validation itself deals with many alternatives and
special cases. MicroWSMO and hRESTS are intended to be applied in
valid XHTML documents, but it may be possible that hRESTS and Mi-
croWSMO tools could also process HTML-invalid input, including for ex-
ample documents that purport to be XHTML but are not well-formed
XML.

• Sections 6.2.2 and 6.2.3, which define the hRESTS and MicroWSMO mi-
croformats, contain structural constraints on the hierarchy of elements
marked up with the microformats’ classes. An hRESTS and MicroWSMO
validator should first validate the underlying HTML, and then proceed to
validate the microformat structural constraints.

The validation of consistency, completeness and correctness of hRESTS and
MicroWSMO descriptions, which is on the level of the service semantics, is
then analogous to the validation of WSMO-Lite descriptions, as defined in Sec-
tions 5.4.2 and 5.4.3.
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Chapter 7

Algorithms for Service
Discovery and Composition

The preceding chapters show how Web service descriptions can be annotated
with semantics, and the ontology in which the semantics are expressed. Semantic
descriptions are intended to support tasks such as service discovery and compo-
sition, therefore in this chapter we define several algorithms for these tasks, in
order to evaluate that the proposed languages can actually support Web service
automation (i.e., that they are fit for purpose). Mainly adapted from existing
literature, these algorithms are not necessarily meant to be the most powerful
or the most efficient ones, instead they are meant to demonstrate the versatility
of our lightweight semantic descriptions.

Through this evaluation step, we check our main success criteria: i) that
our service semantics ontology is sufficiently expressive to support the desired
degree of automation (comprising service discovery, selection and composition),
and ii) that the automation works equally well with RESTful services as it does
with WS–∗ services.

In Section 7.1, we define all the steps that we include in Web service discovery
and composition; for each of these steps, the following sections then provide
automation algorithms: Section 7.2 deals with functional service matchmaking,
Section 7.3 discusses service negotiation and offer discovery, Section 7.4 looks
into ranking Web services on their nonfunctional properties, and Section 7.5
discusses when and how to involve users in the final service selection. When
no single service can fulfill the user’s request, discovery may involve service
composition, which is the topic of Section 7.6.

In the Evaluation Chapter 9, Section 9.2 provides further discussion of how
the algorithms presented below serve to evaluate the contributions of this thesis.

7.1 Discovery Process in General

The Web contains many Web services: in September 2012, the Web service
search engine seekda.com knew about over 28000 WS–∗ services, and the API
and Mashup list programmableweb.com contained more than 7000 RESTful
services. Although the numbers are nowhere near the millions or even billions
promised by early Web service evangelists, it is nevertheless clear that effective
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finding and reuse of services must be supported by powerful search capabilities.
In addition to classical full-text search algorithms that can easily be applied to
service descriptions and documentation, semantic annotations enable greater de-
tail and more expressivity in expressing user goals (queries), and improvements
in precision of the matching of goals to known services.

Semantic service search and matchmaking is commonly called discovery. As
described in Section 2.1.1, the aim of discovery in general is to find those services
that fit the current needs of the user, and potentially to find appropriate concrete
service offers. To help select one service (and one offer), a ranking mechanism can
be employed to sort the services and the offers based on the user’s preferences.

Before we proceed to concrete algorithms in Section 7.2 and beyond, we
formally define in the remainder of this section the several steps involved in the
discovery process. First, in Section 7.1.1 we formalize certain auxiliary terms,
and then in Section 7.1.2, we proceed to the actual definitions for discovery and
composition.

7.1.1 Auxiliary Definitions

In order to specify the inputs and outputs of the automation algorithms, we
define here the terms goal, service registry, concrete offer, and composite service.
The terms service and service description are defined earlier in this thesis.

Definition 7.1 (goal) Goal is a data structure that captures the current relevant
needs of the user, i.e., what the user wants the SEE to achieve.

In the form of informal commands, the following would be example goals:
i) book a skiing trip within three months somewhere in the Tyrolean Alps;
ii) find the current price of the shares of IBM; iii) find possible suppliers of
laptops for our institute.

Different automation tasks have different requirements on what should be
described in a goal. In this thesis, we do not define a common structure for
goals; instead, along with each sample automation algorithm, we define the
data components that need to be present in a goal as inputs of the algorithm.

Definition 7.2 (service registry) The SEE must be aware of some existing Web
services. The knowledge base that contains the (semantic) descriptions of the
known Web services is called the service registry.

An example service registry is iServe (see Section 8.3). A service registry
does not magically know about every existing Web service, instead it must be
populated with service descriptions: a service provider may explicitly submit
the semantic descriptions of its services into the registry, or the provider may
simply publish the service descriptions on the Web, where they can be found by
a Web crawler. The Web service search engine seekda.com demonstrates that
finding Web services by crawling the Web is viable.

Definition 7.3 (concrete offer) As a service description need not contain all the
specific information necessary for a client to be able to evaluate whether the
service can indeed satisfy the detailed goal, concrete offers may be established
by querying the service; an offer describes exactly how the service can satisfy
the goal.

http://seekda.com/
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As an illustration, let us use the hotel reservation service: the semantic de-
scription may define the service as a hotel reservation service with its scope
limited to the city of Rome, which is a useful granularity for Web service dis-
covery. The service description itself does not guarantee that there will be any
hotels available at any concrete requested dates, let alone hotels that fit the
user’s other constraints such as price and location. Therefore, a concrete offer
will then specify a particular hotel and a particular room rate available at that
hotel for the dates required by the user. Generally, there could be multiple offers
from a single Web service, such as, in our case, different hotels and even different
room categories at one hotel, all bookable through the same service.

A semantic description such as above would be called complete but not cor-
rect by Preist [93]. He postulates that a contract agreement phase is necessary
for any service whose description is not correct, among other criteria. In this
thesis, we do not investigate the full range of contract agreement and negotiation
techniques, instead we focus on one particular sub-task of contract agreement,
which is offer discovery. Therefore, we deal with concrete offers instead of con-
tracts or agreed services discussed by Preist.

In case of what Preist calls basic services, i.e. those that do not require a
contract agreement phase, the service description itself is a concrete offer. In
the definition of steps such as ranking (below), we can therefore use the term
concrete offer even when no offer discovery takes place.

Definition 7.4 (composite service) When no single known service can satisfy the
goal, it may be possible to compose together multiple services that, taken to-
gether, do satisfy it. In composition, several services effectively act as one, which
we call a composite service.

Typical examples of services that can be composed together would be air-
plane reservation and hotel reservation for arranging a trip. Preist [93] mentions
service bundles which are roughly equivalent to what we call composite services;
in our work, we assume that a composite service can be treated as a service by
almost all service automation tasks, as discussed below.

7.1.2 Steps of the Discovery Process

Now we can proceed to the definitions of the various tasks related to discovery
in general, illustrated in Figure 7.1.

Matchmaking/
Composition

Offer
discovery

Nonfunctional
filtering

Discovery

se
rv

ic
e 

re
gi

st
ry

di
sc

ov
er

ed
of

fe
rs

m
at

ch
in

g
se

rv
ic

es

m
at

ch
in

g
of

fe
rs

go
al

Ranking Actual
selection

Selection

ra
nk

ed
of

fe
rs

si
ng

le
 o

ffe
r

Figure 7.1: Decomposition of Discovery and Selection

On a high level, we can distinguish discovery from selection: discovery finds
relevant services that fit the goal, and selection choose which service(s) to use
in a concrete execution.

Discovery itself can be split into i) matchmaking and/or composition over
a goal and a service registry, ii) offer discovery through interactions with the



124 Chapter 7. Algorithms for Service Discovery and Composition

services found by matchmaking or constructed by composition, and iii) nonfunc-
tional filtering, which eliminates services and offers that fall outside the client’s
constraints. The following are definitions of these tasks:

Definition 7.5 (discovery) Overall, discovery is the process of finding pertinent
known services and their concrete offers for achieving the user’s goal.
Inputs: goal, service registry
Outputs: a set of concrete offers that match the goal

Definition 7.6 (matchmaking) Based on functional semantics1 and on the in-
formation model, matchmaking selects those services from the service registry,
that may potentially be able to fulfill the goal. In other words, matchmaking
discards services that cannot fulfill the goal (according to their description).
Inputs: goal (functional description of expected functionality), service registry
Outputs: set of services (service descriptions)

Definition 7.7 (composition) Based on functional semantics and on the informa-
tion model, composition combines services from the service registry into com-
posite services that may potentially be able to fulfill the goal.
Inputs: goal (functional description of expected functionality), service registry
Outputs: set of composite services

Definition 7.8 (offer discovery) As an optional step, offer discovery is a specific
kind of contracting: the SEE interacts with the matching services to gather
information about concrete offers pertinent to the goal. In case when offer dis-
covery is not (or cannot be) performed, a straightforward mapping turns each
matching service into a single offer.
Inputs: goal (concrete instance data), set of matching services
Outputs: set of concrete offers

We should note that what we call offer discovery is elsewhere in literature
(e.g. [28, 54]) also called service discovery, making the distinction between a
Web service and the service it actually provides2. We prefer the term offer to
avoid causing confusion due to overloading of the common word “service”. In
addition, the term offer is easily understood to encompass both offered services
and offered products, the basis of e-commerce.

Definition 7.9 (nonfunctional filtering) The filtering step compares the nonfunc-
tional properties of the services and their offers against the user’s constraints,
expressed in the goal.
Inputs: goal (nonfunctional constraints), set of discovered offers
Outputs: set of matching offers

Examples of nonfunctional constraints include the maximum allowed price,
the minimum required trust evaluation, etc.

1In this thesis, we do not consider algorithms for process matchmaking and process-aware
composition, which deal with behavioral semantics.

2The distinct terms service and Web service are used in WSMO [28], and correspond to
Preist’s [93] abstract service and concrete service.
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Finally, selection is supported by a ranking mechanism that sorts the dis-
covered matching offers; the actual selection happens either by presenting the
user with the ranked list of offers, or trivially by automatically choosing the
highest-ranked offer. The following are the definitions of these tasks:

Definition 7.10 (selection) Selection is the process of choosing a single concrete
offer that will fulfill the user’s goal.
Inputs: goal, set of offers
Outputs: a single selected offer

Definition 7.11 (ranking) Ranking is the part of the selection process that can
be automated; it adds ordering to the list of offers.
Inputs: goal (user preferences), set of offers
Outputs: sorted list of offers

The decomposition of discovery and selection into the above subtasks is an
abstract separation of concerns; it does not imply a strict separation of the tasks
in an implementation. For instance, some nonfunctional filtering can be done
before and during offer discovery, and ranking can already sort known offers
while offer discovery is running, presenting the user with preliminary results to
increase the interactivity of the system.

The remaining sections of this chapter describe the steps outlined above
in more detail, presenting concrete algorithms that may be used for realizing
semantic automation of the various discovery and selection tasks. Most of the
content consists of adaptations of existing algorithms to our lightweight se-
mantic annotations, only offer discovery (Section 7.3) is novel and part of the
contribution of this thesis.

7.2 Functional Web Service Matchmaking

As discussed in Chapter 2, Klusch [61] presents the most recent survey of seman-
tic service discovery approaches. Among logic-based approaches, Klusch inves-
tigates what kinds and parts of service semantics are considered for matching in
the various approaches, especially pointing out how various approaches use dif-
ferent combinations of the descriptions of service inputs, outputs, preconditions
and effects (together known as IOPE). Among the matchmakers that use all
the four semantic aspects, Klusch cites the work of Keller et al. [54]3, which we
adopt here for the purpose of demonstrating matchmaking with WSMO-Lite.

Note that in the terms of [28, 54], Keller et al. address Web service discovery
as opposed to service discovery (as discussed above in Section 7.1.2), while we
use the term functional matchmaking here.

The approach of Keller et al. is based on a simple concept of modeling Web
services and goals as sets of relevant objects: a service can deliver certain objects,
and a goal requests them. We use Keller et al.’s naming of these sets: a Web
service W is represented through a set named RW , and a goal G is represented
through a set named RG .

3We use a newer publication by Keller et al. in the same line of work as that cited by
Klusch.
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Keller et al. distinguish two modeling intentions: existential and universal. In
existential modeling, the sets overdescribe the services and goals — a goal G will
be satisfied if any object(s) from RG is delivered; and a serviceW can only really
deliver some objects from RW . For example, a goal set can describe all room
reservations in a given city at given dates, but the intention is to get only one
reservation; and a service set can describe all the possible room reservations at
a given hotel, but only some rooms will be available at some dates. In universal
modeling, the sets describe the service or the goal exactly: the goal requires all
the objects from RG to be delivered, and the service can deliver all the objects
from RW . While universal modeling is potentially more accurate, Keller et al.
list no plausible use cases where the required level of effort would be desirable or
practical. Therefore, we restrict our discussion only to the existential modeling
intention.

In order forW and G to be considered a match, the sets RW and RG have to
be interrelated. There are four possible set-theoretic relations, with an inherent
match-degree ranking among them (the list goes from the best match to the
worst):

• Exact match of equal sets (RG = RW): the service may be able to deliver
all the objects requested by the goal, and it cannot deliver any other,
irrelevant objects. This is the closest match between a goal and a service.
For example, a goal requests accommodation in Rome, and a service offers
exactly accommodation in Rome.

• Web service subset of goal (RG ⊇ RW): the service can only deliver some
of the objects requested by the goal; it cannot deliver irrelevant objects.
For example, if the goal requests accommodation in Rome, a particular
service may only cover budget hotels in this city. The service description
indicates that the service has limitations with respect to the goal (only
budget hotels), but it can be acceptable to the client (whose goal does not
specify the client’s demands on accommodation quality).

• Goal subset of Web service (RG ⊆ RW): the service may be able to deliver
all objects requested by the goal, but it may also (or even only) deliver
irrelevant objects. For example, a service offering accommodation in Italy
may have a limited coverage of hotels in Rome. In this case we merely
have a possible match.

• Non-empty intersection between service and goal (RG ∩ RW 6= ∅): the
service may be able to deliver some of the requested objects, but it may
also deliver irrelevant objects. For example, a Marriott hotel reservation
service is clearly limited with respect to the hotel (it only books Marriott
hotels), but it still is a possible match because the description does not
say whether or not there are any Hilton hotels in Rome.

The four match degrees may be used to rank the discovered services. For
example, performing negotiation with better-matching services first can quicker
lead to useful results, which the semantic client system can asynchronously
display to the user.

WSMO-Lite provides two distinct mechanisms for describing the functional-
ity of Web services: the lightweight but coarse-grained functional classification
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that deals with taxonomies of functionality, and the more expressive capabil-
ity described with preconditions and effects. Both types can be interpreted as
descriptions of sets of objects. Keller et al. [54] only deal with capabilities; we
extend their approach to discovery using functional classifications.

In principle, matching a goal against a set of known services means evaluating
the match between the goal and each individual service separately. In practice,
matchmaking algorithms may be amenable to optimizations such as the use of
search indices which work on the whole corpus of known service descriptions.
For the sake of clarity, we present the matching algorithms without any such
optimizations.

In the subsections below, we detail the concrete matchmaking algorithms
that follow the set-based approach of Keller et al.: in Section 7.2.1, we discuss
the extension of the work of Keller et al. for matchmaking with functional clas-
sifications, in Section 7.2.2, we summarize matchmaking with capabilities from
[54], and then in Section 7.2.3 we combine the two separate approaches.

7.2.1 Matchmaking with Functional Classifications

Functional classification is the simpler one of the two mechanisms WSMO-Lite
provides for functional description of Web services. Using SAWSDL model ref-
erences, a Web service s can be associated with one or multiple categories
(cs1, . . . , c

s
n) from one or multiple classification ontologies. For the purpose of

the discovery algorithms here, we interpret those categories as specifying the
sets of objects that can be delivered by Web services, as discussed above.

Multiple categories are treated in conjunction — a service belongs to all the
functionality categories with which it is associated. In other words, the service
is described by the intersection of the functionality categories. Effectively, we
can say the service is associated with a single functional category RW :

RW =
⋂

i=1...n

csi

For selecting Web services, a user goal must specify a category of inter-
est, RG , so that the matchmaking algorithm can return services associated with
matching categories that are related with the goal category through the sub-
class relationships that make up the functionality classifications. Below, we first
discuss how goals may describe the category RG , and then we proceed to the dis-
cussion of how goal categories are matched with service categories, and how the
subclass relationships between functionality categories are taken into account
in a concrete matchmaking algorithm.

Describing the Goal Category

There are numerous levels of detail on which a goal can specify the desired
category, starting with a single concrete category, and extending towards in-
creasingly complex combinations of categories:

1. A single concrete category: the goal specifies an existing functionality
category with its identifier. This kind of goal is useful if there is a category
that well covers the intent of the user.
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2. An intersection of multiple categories: the goal specifies a set of
existing categories cg1, . . . , c

g
m expecting that the matching services are

associated with all the given categories. The desired category RG is the
intersection of the specified categories:

RG =
⋂

i=1...m

cgi

Specifying the goal category as an intersection is useful for instance when
the user requests services with multiple functionalities, such as a combined
flight ticket booking and hotel reservation service.

3. A union of multiple categories: the goal specifies a set of existing
categories cg1, . . . , c

g
m expecting that the matching services are associated

with any one or more of the given categories. The desired category RG is
the union of the specified categories:

RG =
⋃

i=1...m

cgi

Specifying the goal category as a union is useful for instance when there are
multiple functionality classifications that cover the same functionalities,
and services are likely to be described using one or the other classification.
For instance, a goal might ask for all services associated either with the
eCl@ss 7.0 category 25-12-13-90 “Hotel, guesthouse, pension (travel man-
agement, unclassified)”4 or with the Wikipedia category Hotels5, if eCl@ss
and Wikipedia categories are used as WSMO-Lite functionality classifica-
tions. In this case, the goal uses a union of categories to locally (in the
scope of this one goal) mediate between two classifications that differently
capture the category of accommodation booking services.

4. More complex expressions: the goal specifies an expression that de-
fines RG as an arbitrary combination of concrete categories. The expression
can be in any suitable language that can describe set operators or class
membership rules. For instance, a goal might express a combination of the
two examples above: the desired category covers services that do accom-
modation booking (category a, expressed concretely as the aforementioned
eCl@ss category, here ae, or the Wikipedia category aw) and flight ticket
booking (f , also in either of the two classifications, fe and fw):

RG = (ae ∪ aw) ∩ (fe ∪ fw)

The expressivity of the goal language may grow by including further fea-
tures such as negation (the desired services must not be in a certain cat-
egory) etc.

For the purpose of illustrating matchmaking with WSMO-Lite, we focus on
the second mentioned approach, specifying the goal category as the intersection

4http://www.eclass-online.com/system/suche/index.html?eversion=7.0&lang=

en&ssuche_x=x&su=25121390
5http://en.wikipedia.org/wiki/Category:Hotels

http://www.eclass-online.com/system/suche/index.html?eversion=7.0&lang=en&ssuche_x=x&su=25121390
http://www.eclass-online.com/system/suche/index.html?eversion=7.0&lang=en&ssuche_x=x&su=25121390
http://en.wikipedia.org/wiki/Category:Hotels
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of multiple concrete categories, which is symmetrical to how we describe ser-
vices, and sufficient for the use cases presented throughout this thesis. Goals
with category union would be able to incorporate local mediation between func-
tionality classifications; however, mediation can also be done through mapping
ontologies used by the matchmaking reasoner.

Matching Service and Goal Categories

WSMO-Lite recognizes only one type of relationship between functionality cat-
egories: the subcategory (subset) relationship. Categories and their subcategory
relationships form directed acyclic graphs called category hierarchies. To deter-
mine the match degrees between goals and Web services, we use the category
hierarchies:

• RG = RW : the service exactly matches the goal if it is both a subset and
a super-set of the goal,6 as defined below.

• RG ⊇ RW : the service is a subset of the goal if the service is associated
with a subcategory of each of the goal categories.

• RG ⊆ RW : the goal is a subset of the service if the goal is associated with
a subcategory of each of the service categories.7

• RG ∩ RW 6= ∅: the service intersects the goal if any of the above is true,
but also if we can find any one category that is a subcategory of all of the
categories associated with both the goal and the service.8

Figure 7.2 shows the matchmaking algorithm that embodies our adaptation
of the work of Keller et al. to WSMO-Lite functional classifications; it formalizes
the conditions for each of the match degrees.

The algorithm employs subsumption reasoning, which can in some languages
be reduced to the well-known and tractable problem of graph reachability (for
instance, in WSML-Quark [122]). In other words, discovery with functional clas-
sifications can provide good performance at the cost of expressivity — the level
of detail practically possible in service and goal descriptions.

7.2.2 Matchmaking with Preconditions and Effects

In addition to the coarse-grained functionality classifications discussed above,
WSMO-Lite supports fine-grained service description with logical expressions
that capture the precondition and effect (together, the capability) of the service.
Preconditions and effects can also be used to model services as sets of objects,
as shown in [55] (referenced from [54] as a concrete realization of set-based

6Note that this is a one-way implication, not an exclusive iff : for example when using two
overlapping classifications for which we do not have a formal mapping, it is possible that the
service category is an exact match of the goal category but they use different terms so the
matchmaker has no means of verifying the match.

7Note that some taxonomies, such as the eCl@ss classification, only use leaf categories to
classify objects. Such taxonomies eliminate the possibility of a service being a proper superset
of any goal.

8We assume here that any explicitly defined functionality category can be seen as a non-
empty set of objects that some service can deliver.
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Algorithm: matchmaker for WSMO-Lite functional classifications
Inputs: set S of known services annotated with functionality categories,

goal categories cg1, . . . , c
g
m

set C of all known WSMO-Lite functionality categories
Result: the set of tuples 〈service, match degree from {=,⊇,⊆,∩} 〉

1 M := ∅
2 for each s ∈ S (associated with categories cs1, . . . , c

s
ns)

3 δ := “−” (match degree, initially “−” for “no match”)
4 if ∀i ∈ {1 . . . ns} ∃ j ∈ {1 . . .m} : cgj ⊆ c

s
i

5 δ := “⊆”
6 if ∀j ∈ {1 . . .m} ∃ i ∈ {1 . . . ns} : cgj ⊇ c

s
i

7 if δ = “⊆”
8 δ := “=”
9 else

10 δ := “⊇”
11 if ∃ c ∈ C : (∀i ∈ {1 . . . ns} : c ⊆ csi ) ∧ (∀j ∈ {1 . . .m} : c ⊆ cgj )
12 δ := “∩”
13 if δ 6= “−”
14 M := M ∪ {〈s, δ〉}
15 return M

Figure 7.2: Matchmaker algorithm for WSMO-Lite functional classifications

discovery in formal logics). Here, we provide an adaptation of their approach to
the terminology of WSMO-Lite.

In [55], Keller et al. propose two ways of expressing the sets of objects that
represent Web services and user goals:

• Simple semantic descriptions: the sets RW and RG are defined using first-
order formulas φ(x) and ψ(x)9 with one free variable each:

W : RW = {x | φ(x)}
G : RG = {x | ψ(x)}

• Rich semantic descriptions: the above is extended with a notion of input
data that influences the set of objects delivered by the service. The ser-
vice description expresses a precondition φpre(i1 . . . in) that defines valid
inputs, and an effect φeff (x, i1 . . . in) that describes how the set of objects
delivered by the service follows from the inputs. The precondition and the
effect are combined together in a single expression φ(x, i1 . . . in). The ser-
vice is not considered to deliver anything meaningful if the precondition
cannot be fulfilled by a given set of concrete inputs. In the description,
we denote RWG the set of objects returned by the service for a given goal
with concrete input data, which is captured in the goal description as a
set of data instances DG :

W : RWG = {x | ∃ i1 . . . in ∈ DG : φ(x, i1 . . . in)}
φ(x, i1 . . . in)↔ φpre(i1 . . . in) ∧ φeff (x, i1 . . . in)

G : RG = {x | ψ(x)}
DG = {i1, . . . , im}

9Note that in contrast to [55], we swap the use of the symbols φ and ψ, for consistency
with the preceding chapters.
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Simple semantic descriptions:
Set relationship Proof obligation

RG = RW W,G,O |= ∀x : (ψ(x)↔ φ(x))
RG ⊆ RW W,G,O |= ∀x : (ψ(x)→ φ(x))
RG ⊇ RW W,G,O |= ∀x : (ψ(x)← φ(x))

RG ∩RW 6= ∅ W,G,O |= ∃x : (ψ(x) ∧ φ(x))

Rich semantic descriptions:
Set relationship Proof obligation

RG = RWG W,G,O |= ∃ i1, . . . , in : (∀x : (ψ(x)↔ φ(x, i1 . . . in)))
RG ⊆ RWG W,G,O |= ∃ i1, . . . , in : (∀x : (ψ(x)→ φ(x, i1 . . . in)))
RG ⊇ RWG W,G,O |= ∃ i1, . . . , in : (∀x : (ψ(x)← φ(x, i1 . . . in)))

RG ∩RWG 6= ∅ W,G,O |= ∃ i1, . . . , in : (∃x : (ψ(x) ∧ φ(x, i1 . . . in)))

Table 7.1: Proof obligations for the four types of set-theoretic relationship be-
tween the goal and the service object sets (from [55])

In WSMO-Lite service descriptions, the formula φ(x) or φeff (x, i1 . . . in) is
captured in a suitable logical language such as WSML [136] as the effect of a Web
service capability K (kappa, see Section 4.3.2), and the formula φpre(i1 . . . in)
is similarly captured as the capability’s precondition.

In order to evaluate the various types of match, an automated reasoner can
be employed to prove logical relationships between the formulas. In Table 7.1,
we summarize the proof obligations defined in [55]. All of the proof obligations
are of the form

W,G,O |= expression

where W is the definition of the Web service, G is the definition of the goal,
O is a set of ontologies to which both descriptions refer, and expression is the
actual formula that combines ψ(x) with φ(x) or φ(x, i1 . . . in). Note that for the
rich semantic descriptions, we compare the set of desired objects RG with the
runtime-computed set of objects RWG that the service provides for the given
goal data.

A discovery algorithm straightforwardly follows from the table: the algorithm
would simply use a reasoner to evaluate the proof obligations for the given goal
and for each known service, returning the matching services along with their
match degrees.

Modeling with rich semantic descriptions is backward-compatible with the
simple semantic descriptions: if there is no precondition, and the effect is in-
dependent of the input data i1 . . . in, the proof obligations in the lower half of
Table 7.1 reduce to those from the upper half of the table. This compatibility
makes it possible for simple descriptions to be used together with rich descrip-
tions in a single system. It also enables gradual adoption of semantic complexity
— a system can first only support the simple descriptions, and later adopt rich
descriptions when the involved service providers and users become familiar with
the logics languages and with the ontologies involved in the system; the older
simple descriptions will still be evaluated correctly.



132 Chapter 7. Algorithms for Service Discovery and Composition

7.2.3 Combining Functional Classifications and Capabili-
ties

So far, we have adapted the work of Keller et al. to WSMO-Lite precondi-
tions and effects (Section 7.2.2), and we have extended it to deal with WSMO-
Lite functionality classifications (Section 7.2.1). Here, we discuss how these two
mechanisms can usefully be combined.

To combine functional classification discovery with capability discovery, func-
tional classification descriptions can be straightforwardly translated to capabil-
ity descriptions as follows:

W : RW =
⋂

i=1...n

csi =⇒ φ(x) = (∀i = 1 . . . n : x ∈ csi )

Equally, goal descriptions can also be translated in this manner. The translation
would enable capability discovery to use functional classification annotations.
However, due to the difference in nature of the taxonomies used for functional
classifications and the ontologies used for fine-grained logical expressions, we do
not expect that creating mappings between them would be economical; without
mappings between the two worlds, the above translation could not result in new
matches (better matchmaking recall). However, unifying functional classifica-
tions and capabilities is not the only way of combining the two matchmaking
approaches.

Alternatively, the two approaches can be combined in an efficient two-stage
discovery process, where functional category matching precedes precondition
and effect evaluation. Functionality classifications can be expected to be coarse-
grained, with each category expressing the consensus of a community. On the
other hand, logical preconditions and effects provide the expressivity to describe
services and goals in great detail, however, at the cost of decreased performance,
due to the computational complexity of logical reasoning and proof. In combi-
nation, discovery over a large Web service registry can perform an efficient first
step using functional classifications, and then evaluate the preconditions and
effects only on the services with matching categories. Thus, WSMO-Lite offers
improved scalability to large Web service registry sizes over existing approaches
such as OWL-S and WSMO, where discovery traditionally always performs com-
putationally intensive reasoning.

When used alone, capability descriptions need to be detailed and yet com-
prehensive to describe the service’s functionality unambiguously. In combina-
tion with functionality classifications, a functional category specifies the broad
functionality of the given service, therefore the preconditions and effects in the
capability description must only express desired additional details. Effectively,
the logical expressions that make up the capability descriptions may be simpler,
easing the task of authoring the semantic service descriptions.

The two-stage combination of the two discovery approaches (based on func-
tionality classifications and on formal capabilities) requires also that the user
goal contain both kinds of data: a requested functionality category and a de-
scription of the desired effect (plus input data if rich capability descriptions are
used). Also here, the logical expression that defines the desired effect is simpli-
fied because it operates in the context of the requested functionality category
specified by the goal.
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In summary, combining matchmaking through functionality classifications
and through logical capabilities has benefits both in performance and in com-
plexity of service descriptions.

Notably, Stollberg [116] achieves similar effects on discovery scalability and
description complexity by enhancing WSMO discovery [54] with the use of goal
templates and Web service templates, going through all three steps of the heuris-
tic classification problem-solving method, as discussed in [28]. The templates are
presumably defined through a similar process as our functionality classifications
— by reaching consensus on a useful subdivision of a domain. Goal templates
can be matched against Web service templates ahead of the time of concrete
discovery, so that a concrete goal need only be matched against the concrete
Web services that are described using Web service templates that match the
template of the goal.

As Stollberg’s work focuses on the performance benefits from pre-matching of
templates, it does not pursue the difference between authoring logical capability
descriptions and creating hierarchies of functionality templates. WSMO-Lite
has functionality classifications separated from logical capabilities, stressing the
differences in granularity and degree of collaboration expected to author the two
different kinds of semantic descriptions.

7.3 Service Contracting, Offer Discovery

As described at the beginning of this chapter, offer discovery follows the task of
service discovery, and its results go into filtering, ranking and selection. Service
discovery returns a set of services that can potentially fulfill a user’s goal. Offer
discovery interacts with these services (or the service providers, if taken more
generally) in order to find out any concrete offers that are relevant to the goal;
the result of offer discovery is the set of available offers. This set is then subject
to filtering and ranking according to the user’s constraints and preferences, in
order to select the best offer. In the end, the selected offer may be consumed,
i.e., the client invokes the service that provided this offer and, after successful
invocation, it will get the offered product or functionality.

Traditionally, offer discovery is done by code that is specific for a given
service. For illustration, e-commerce data aggregation applications such as ex-
pedia.com need to have special code for any partner interface with which they
interact. Having distinct code for multiple partnering services has negative im-
pact on the costs of maintenance and evolution of the system. The main benefit
of using semantics for offer discovery is that a semantic offer discovery mecha-
nism need not really understand the full semantics of any particular web service
interfaces (apart from the inputs and outputs).

In this section, we present an opportunistic approach to offer discovery that
is based on data annotations and safe interactions. The material presented here
is a significantly extended version of [63].

Note that offer discovery is an optional step, only applicable if the client’s
goal is sufficiently specific. In our hotel room reservation example, if the goal
defines the concrete place and the dates, offer discovery can find concrete rates
available in concrete hotels bookable through the discovered services. However,
we can alternatively imagine the client looking for one hotel-booking service to
include in a company travel reservation system (presumably so that they can
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negotiate a beneficial exclusive contract), in which case offer discovery does not
apply. In the absence of offer discovery, the following semantic automation steps
(nonfunctional filtering and ranking, selection) can treat each discovered service
as a single offer, so that we do not have to define two variants of each algorithm
(such as service ranking and offer ranking).

This section continues in seven subsections. Section 7.3.1 formally defines
what we mean by offer and offer discovery. Section 7.3.2 discusses the WSMO-
Lite semantics we use for implementing offer discovery. In Section 7.3.3, we
specify what data a user goal needs to contain to support offer discovery. In
Section 7.3.4, we present a more fine-grained example hotel reservation service
and a goal, which we then use in Section 7.3.5 to detail and explain our offer
discovery algorithm. In Section 7.3.6, we discuss the particular AI planning
approaches used in our offer discovery algorithm. Finally, in Section 7.3.7, we
offer several concluding remarks on this offer discovery approach.

7.3.1 Analysis and Definition of Offer and Offer Discov-
ery

In order to be able to talk about offer discovery, we need to specify what we mean
by the term offer. From the point of view of contracting, an offer is a contract
proposed by the service provider to the client, who can evaluate and accept or
reject it.10 With Web services, there is no widely-accepted specific interface that
would explicitly talk about contracts or offers and their acceptance or rejection
by the client. Instead, some operations of a Web service may be used to inquire
for information about what the service offers, e.g. for finding out hotel room
availabilities for given dates (see the example in Figure 6.3, on page 97). The
client may reject an offer by simply ignoring that data, and it may accept it
by calling the operations that deliver the actual functionality of the service;
e.g. booking a room in a given hotel for the given dates.

Therefore, for the purposes of defining offer discovery, we distinguish two
kinds of Web service operations: inquiry operations and execution operations,
defined as follows:

Definition 7.12 (inquiry operation) An inquiry operation of a Web service is
such an operation whose sole function is to query the current state of the Web
service, without causing any side-effects.

For a given goal, the applicable offers of a service depend on the goal data,
the functionality of the service, and on the current state of the service. The
functionality is captured in the semantic description used for service discov-
ery, therefore offer discovery needs to query the state of the service, using the
data from the goal. The example hotel reservation service would have inquiry
operations such as search(date,city) and getHotelDetails(hotel).

Definition 7.13 (execution operation) An execution operation of a Web service
is such an operation whose invocation causes such side-effects that are considered
part of the service functionality.

10Naturally, an offer may only be valid for a limited period of time; this consideration,
however, is not yet included in our work.
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Execution operations are those that are involved in consuming offers. The
hotel reservation service would have execution operations such as reserve(rate,
creditCard,guestInfo) and cancelReservation(reservation).

We denote the set of all operations of a given service as O, the set of all
inquiry operations Oq, and the set of all execution operations Ox:

Oq ⊆ O, Ox ⊆ O, Oq ∩Ox = ∅

Apart from inquiry operations and execution operations, a Web service may
other operations that are not relevant for offer discovery, such as management
operations for administration purposes. In other words, we do not intend to
present here an exhaustive categorization of Web service operations.

Web service operations have input and output messages, denoted as in(o)
and out(o) (o ∈ O). With semantic annotations (cf. Table 4.2, page 63) based
on an ontology ΩI = (C,R,E, I), a service description can specify the type(s) of
data that are contained in those messages, T (in(o)) ⊆ C ∪ R and T (out(o)) ⊆
C ∪R.

Inquiry operations, being intended for information retrieval, must have a
non-empty set of output types:

∀o ∈ Oq : T (out(o)) 6= ∅ (7.1)

For a given goal, service invocation may only use a subset of the available
execution operations, which we call the intended execution operations O′x ⊆ Ox.
For instance, to book a hotel room, the invocation would only execute the reserve
operation; the cancelReservation operation would naturally not be used.

In order for the client to be able to invoke the service’s intended execution
operations, it must provide data for input messages of the operations.

Definition 7.14 (needed execution input types) A type whose instance the client
must provide for a successful invocation of the service’s execution operations is
called a needed execution input type.

We mark Tx the set of all the needed execution input types for a given goal
and service. Because some execution operation input data can come from the
output data of other execution operations, we approximate the needed execution
input types as the input messages of the intended execution operations minus
the types associated with intended execution operations’ output messages:

Tx =
⋃
o∈O′x

T (in(o)) \
⋃
o∈O′x

T (out(o))

This is a straightforward way of computing an approximate set of the needed
execution input types, used below for defining the structure of an offer, without
the necessity to analyze the ordering of the execution operations during an actual
invocation, especially since the ordering may actually depend on the invocation
data. The approximation may prove to be a limitation for Web services with
conversational interfaces, but the otherwise necessary analysis of the invocation-
time execution operation ordering is beyond the scope of this thesis.

In our example hotel booking scenario, the intended execution operation is
reserve(rate,creditCard,guestInfo), therefore the needed execution input types are
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hotel rate (which includes here the given set of dates), credit card information,
and guest information.

Some of the input data values come from the user goal, in our case the guest
and credit card data. The other values must be filled in offer discovery, so that
the goal and the offer combined together contain data for each of the needed
execution input types.

In addition to data for the needed execution input types, offers can also
specify extra information, which is especially useful for ranking. In our example,
every rate offered by a hotel reservation service is associated with a specific hotel,
and detailed information about the hotel, such as its star rating or concrete
location in the requested city, is useful for comparing the rates. Strictly speaking,
the client does not need to know the star rating and the concrete location of
a hotel to reserve a room there, however, the usefulness of this information
for offer ranking is obvious, therefore offer discovery should also find the extra
information.

Finally, offer discovery generally deals with multiple services, therefore each
offer also needs to be associated with the specific service that offers it. This en-
sures that the offer is a self-contained construct for the further SWS automation
steps: the invocation component knows what service to invoke; and in filtering
and ranking the client may express constraints or preferences directly on the
services, for instance by building trust with particular providers that delivered
good value in the past.

Combining all the aspects discussed above, we formalize the structure of an
offer:

Definition 7.15 (offer) An offer φ is a tuple that contains an identifier s of a
service, and two sets of data values: execution data Dx required for invoking
the service and consuming this offer, and extra information De that helps the
client to filter and to rank the offers:

φ = 〈s,Dx, De〉

For a service described using an ontology ΩI = (C,R,E, I), all explicit
instance data is understood to be part of E. Therefore,

Dx ⊆ E, De ⊆ E

If the execution data Dx of an offer contains instances for all the needed
execution types Tx, an offer is said to be complete:

∀t ∈ Tx : ∃x ∈ Dx : t(x) (7.2)

In Equation 7.2, we use the notation t(x) to capture that x is an instance
of the type t. Since the types come from the classes C and relations R of an
ontology ΩI = (C,R,E, I), they are predicates, so we use the predicate notation.
For n-ary predicates (members of R), x would be an n-tuple that represents the
n parameters of the predicate.

Only a complete offer can be used for service invocation to achieve the ex-
ecution of the offered functionality. Invocation only uses the service identifier
and the execution data of an offer. This allows us to establish an equivalence re-
lationship for complete offers: two complete offers are equivalent iff their service
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identifiers and their execution data sets are the same:

φ1 = 〈s1, Dx
1 , D

e
1〉, φ2 = 〈s2, Dx

2 , D
e
2〉 : φ1 ≡ φ2 ⇔ Dx

1 = Dx
2 ∧ s1 = s2

This offer equivalence relation disregards the extra information De. If we had
two complete offers that would vary only in the extra parameters, the service
could not know which of the two offers the client intends to consume. Hence,
the offer discovery process must assure that it does not produce different but
equivalent complete offers.

Expanding on Definition 7.8 (page 124), we finally define offer discovery:

Definition 7.16 (offer discovery) Offer discovery is a function (named DiscO
below) which maps a set S of discovered Web services into a set Φ of non-
equivalent (Eq. 7.5) complete offers from the provided services (Eq. 7.6), taking
into account the user goal G.

DiscO(S,G) =
⋃
s∈S

DiscO1 (s,G) (7.3)

DiscO1 (s,G) = Φ (7.4)

∀φ1, φ2 ∈ Φ : φ1 ≡ φ2 ⇔ φ1 = φ2 (7.5)

∀φ ∈ DiscO1 (s,G), φ = 〈s′, Dx, De〉 : s′ = s (7.6)

While we define offer discovery here to deal with a single discovered service
at a time (DiscO1 ), it is possible that a more sophisticated offer discovery
approach can negotiate with multiple services in parallel and pitch them one
against another in order to get better deals. For example, a retailer can promise
to match any competitor’s price, so the offer discovery process would need to
get the competitors’ offers first and then use them to get matching counteroffers
from the retailer. Even though this kind of multi-way negotiation is sometimes
possible in the real world, we have not seen a single example of a Web service
with such capabilities, therefore we leave this as a possible extension to be
revisited in the future.

While we choose to define offer discovery to produce only complete offers, it
may be worth in the future to also investigate offer discovery approaches that
may deal with incomplete offers. An example objective in this direction would
be to use the needed execution input types missing in an incomplete offer to
prompt the user for further data.

Finally, in case offer discovery is not actually performed (since the step is
optional), every discovered service is treated as a single offer with no data beside
the service. Then the function DiscO is replaced by a trivial version DiscO0 :

DiscO0 (S) =
⋃
s∈S
{〈s, ∅, ∅〉} (7.7)

7.3.2 WSMO-Lite Annotations for Offer Discovery

Offer discovery, as defined above, needs to know what operations are inquiry op-
erations (and how to invoke them automatically), what operations are execution
operations relevant to the goal (the intended execution operations), and what
the inputs and outputs of all these operations are. WSMO-Lite annotations can
capture this information, as detailed below.
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Identifying inquiry operations: inquiry operations are those operations
that only provide information and do not have any significant side-effects. In
other words, they are what the Web architecture [3] calls “safe interactions,”
as described in Section 3.2.4. Information retrieval is the canonical example
of a safe interaction: the client may query a service about the availability of
hotel rooms, yet by issuing the query the client makes no commitment to book
the room. Safe operations are available both in WS–∗ and RESTful services
(cf. Sections 5.2 and 6.5). As part of the behavioral semantics of the service,
WSMO-Lite uses the WSDL 2.0 category wsdlx:SafeInteraction to denote the
safety of an operation.

At present, we treat all safe informations with non-empty output messages
(cf. Equation 7.1) as offer-inquiry operations. Even if such an operation is not
intended as an inquiry operation, if the offer discovery process determines it
should be invoked, the operation’s safety guarantees there is no harm in pro-
ceeding,11 although the invocation may not actually return relevant information
about the service offers.

Identifying intended execution operations: any non-safe operation can
be seen as a potential execution operation. If a given service has a single non-
safe operation, it can be presumed to be the intended execution operation. If
there are multiple non-safe operations, the set of intended execution operations
can be specified directly in the user goal.

Identifying inputs and outputs: Capturing the information semantics of
Web services, WSMO-Lite annotates operation input and output messages with
pointers to ontology entities, such as RDFS classes. These annotations deter-
mine, for instance, the needed execution input types, used in forming the offers
and in distinguishing between execution data Dx and extra information De.

During offer discovery, the client invokes the inquiry operations, therefore
it also needs the lowering annotations on their input messages, and lifting an-
notations on the output messages. These annotations are embodied directly
in SAWSDL loweringSchemaMapping and liftingSchemaMapping attributes,
and in their lifting and lowering MicroWSMO equivalents.

7.3.3 Goals for Offer Discovery

Offer discovery, like functional service matchmaking, is driven by a user goal,
and therefore it also poses requirements on the information contained in the
goal structure. An offer discovery goal must specify the intended execution op-
erations O′x, and it must provide instance data DG for invoking the inquiry
operations, in order to start the offer discovery process:

G : O′x ⊆ Ox
DG = {i1, . . . , in}

11No harm apart from the wasted processing and network resources, whose evaluation is
out of scope of this thesis.
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7.3.4 Example Service and Goal for Offer Discovery

To support our explanation of the algorithm in the following subsection, we pro-
vide here a more detailed example of a hotel reservation service and a matching
goal. The service interface is tailored here to illustrate features of the offer dis-
covery algorithm. The service has the following operations:

• safe listCities() returns the list of cities (in an ontology, instances of the
class City) where this service has hotels.

• safe listHotels(City) returns the list of hotels (instances of the class Hotel)
in a given city.

• safe listRates(Hotel, ReservationRequest) returns the list of concrete rates
(instances of Rate) available at the given hotel, specific for the number of
guests and for the dates that are together captured in the ReservationRe-
quest input.

• safe getHotelDetails(Hotel) returns detailed information about the given
hotel.

• reserve(Rate, CreditCard) reserves the room and returns a reservation con-
firmation, assuming the given rate can be reserved using the given credit
card.

The reserve() operation is an execution operation, and all the other opera-
tions are inquiry operations. The types of the two parameters of reserve() are
the needed execution input types: Rate and CreditCard.

The user goal is to reserve a hotel room in Rome (an instance of City) for two
people, for August 2–8, 2011 (as specified in an instance of ReservationRequest),
using the client’s credit card (naturally, an instance of CreditCard). In effect, the
goal has three instances in DG . The goal need not specify that reserve() is the
intended execution operation, since it is the only candidate.

7.3.5 Offer Discovery Algorithm

Before we can present our actual offer discovery algorithm, we need to define
several auxiliary functions:

plan(initial state, goal state, operations): The offer discovery algorithm uses AI
planning (cf. [79]) to select a sequence of operations that return offer in-
formation. Section 7.3.6 discusses the particular planning algorithm we
use.

invoke(service, operation, knowledge base): In order to query the service about
its offers, the client must invoke inquiry operations. The function invoke
represents an invocation of a given operation on a given service, using a
given knowledge base for the input data. The result is a set of instances
Dout = {i1 . . . im}. If the operation executes successfully, the response
data should contain instances for all the output types of the operation:

∀t ∈ T (out(o)) : ∃x ∈ Dout : t(x)
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Function: DiscO1 (s,G)
Inputs: service s with inquiry operations Oq and execution operations Ox;

user goal G with intended execution operations O′x and instance data DG ,
Tx are the needed execution input types for O′x

Result: the set of offers provided by s
1 P := plan(DG , Tx, Oq) (P = [o1, . . . , on], oi ∈ Oq)
2 φ1 := 〈s, Dx = {x | x ∈ DG ∧ ∃ t ∈ Tx : t(x)}, De = ∅〉
3 Φ := {φ1}
4 for i := 1 . . . n
5 Φ′ := ∅
6 for each φ ∈ Φ (φ = 〈s,Dx

φ, D
e
φ〉)

7 KB := Dx
φ ∪De

φ ∪DG
8 Dout := invoke(s, oi,KB)
9 if Dout 6= ∅ then Φ′ := Φ′ ∪ addResponseDataToOffer(φ,Dout , Tx)

10 Φ := Φ′

11 Φ := gatherExtraInformation(Φ, s,G, P )
12 while ∃φ1, φ2 ∈ Φ : φ1 6= φ2 ∧ φ1 ≡ φ2 (φ1 = 〈s,Dx

φ1
, De

φ1
〉, φ2 = 〈s,Dx

φ2
, De

φ2
〉)

13 Φ := Φ\{φ1, φ2}
14 φ1 := 〈s,Dx

φ1
, De

φ1
∪De

φ2
〉

15 Φ := Φ ∪ {φ1}
16 return Φ

Figure 7.3: Offer Discovery Algorithm

addResponseDataToOffer(. . .) and gatherExtraInformation(. . .): In the interest
of brevity of the main algorithm, we have extracted two parts of the offer
discovery logic into these two functions, discussed further in this section.

Our offer discovery algorithm is shown in Figure 7.3. In short, it starts by
creating a plan for executing the inquiry operations, which is then executed,
resulting in offer data.

On line 1, the algorithm tries to find a sequence of inquiry operations that
will provide the needed execution input types. This is accomplished using AI
planning (discussed below in Section 7.3.6), with the initial state being the goal
instance dataDG . The planning goal state is specified by all the needed execution
input types Tx, and the available operations are all the inquiry operations Oq.

In our example, the goal has data for a City (Rome), a ReservationRequest (2
persons, August 2–8, 2011) and a CreditCard; the plan needs to result in a Rate
and a CreditCard (the needed execution input types; the CreditCard instance is
already in the goal); and the service provides the four inquiry operations. The
resulting plan, straightforwardly, is listHotels→listRates.

The algorithm assumes that the goal instance data does not satisfy all the
needed execution input types. If it did, the resulting plan would be empty and
the algorithm would only attempt to gather the extra information, as described
below.

Alternatively, if the instance data indeed does not satisfy the needed exe-
cution input types but no suitable plan can be found, our algorithm will fail
because it can produce no complete offers. Such a situation can occur either
when the service does not provide suitable offer inquiry operations, or when the
goal does not have suitable input data.
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After making the offer discovery plan, the algorithm creates an initial offer
(line 2), using data from the goal: any instances from the goal that satisfy any of
the needed execution input types become execution data of the initial offer. In
the beginning, the initial offer is the only one that the offer discovery algorithm
knows about (line 3). This offer is also most likely incomplete, or else the inquiry
plan prepared above is empty.

In our example, the initial offer only contains the credit card in the execution
data, and it needs an instance of the class Rate to be complete.

Now the algorithm can start invoking the planned inquiry operations (lines 4–
10). Every operation is invoked for each currently known offer (lines 6–9); the
first operation listHotels is invoked only for the initial offer. The request message
for the operation invocation is created from the offer’s execution data and extra
information, together with the instance data from the goal (line 7).

The service’s response Dout adds data to the current incomplete offer. In
fact, the response may contain a list of data describing multiple offers based
on the current one. On line 9, the function addResponseDataToOffer , detailed
below, combines this response data with the current offer, resulting in one or
more new offers. For example, our hotel service’s listHotels(City) operation will
return a list of the hotels in the given city (Rome, as specified in the goal
instance data). Combined with the initial offer, the list translates into a set of
incomplete offers, one for each hotel.

If the operation invocation fails (returns no data), we interpret it as there
being no offers matching the input data. In our example, the service may have
no hotels in a given city, or a given hotel is fully booked at the given dates. In
such a situation, the current offer is eliminated from further consideration: it is
not added to the set Φ′ of new offers on which the next operation in the plan
will be invoked.

After all the planned operations are invoked, all the offers in Φ are expected
to be complete. However, a complete offer is only guaranteed to satisfy all the
needed execution input types, but it does not necessarily contain all the in-
teresting information that the service can provide. For example, after invoking
listHotels and listRates, we presumably have information about the prices of
the offered rooms, but we do not necessarily know anything about the hotels.
For that, we want to invoke the operation getHotelDetails. This is done in the
function gatherExtraInformation (line 11), described further below.

The algorithm, as described so far, does not guarantee that it results in
non-equivalent offers (see Equation 7.5, page 137). No equivalent offers can be
created in our example hotel scenario, because the offered rates are assumed
to be hotel-specific. In a different scenario, however, we can demonstrate how
the algorithm can arrive at two different equivalent offers: let us say the user
wants a wall clock, and we are discovering the offers of an online store service.
In this hypothetical case, there are two subcategories of wall clocks: analog and
digital. A novelty clock that has both an analog face and a digital display could
be in both categories, and would constitute two equivalent offers: the execution
data would be the same (the clock’s product ID), but the extra information
would differ (one offer would have come through the analog clock subcategory,
the other through digital).

Therefore, at the end (lines 12–15), the algorithm combines all equivalent
offers by merging their extra information sets De (the service identifier and the
execution data are the same in equivalent offers).
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Combining response data with the current offer

An operation’s response can contain data about a list of offers. Since we do not
have any explicit offer mark-up in the data, we must recognize different offers by
other characteristics of the data. Our approach is based on three assumptions
on the structure and function of the inquiry operations:

1. For the successful invocation of any inquiry or execution operation o, we
assume that for each input type t ∈ T (in(o)), the request (input) message
(a set of instances Din) need only contain a single instance x of that type:

∀t ∈ T (in(o)), ∀x1, x2 ∈ Din : (t(x1) ∧ t(x2)) ⇒ x1 = x2

If a list of values is needed, it should be encapsulated in a single container,
making explicit the relation between the multiple values.

2. We assume that there is only one type t ∈ C ∪ R (of the ontology ΩI =
(C,R,E, I)) that has multiple instances in the response (output) data
Dout of an invoked inquiry operation:

∀t1, t2 ∈ C ∪R, ∀x1, x2, x3, x4 ∈ Dout :(
t1(x1), t1(x2), x1 6= x2, t2(x3), t2(x4), x3 6= x4

)
⇒ t1 = t2

3. We also assume that an inquiry operation will not return new instances
for types already satisfied in the current offer:

¬∃x ∈ Dout :
(
∃ t ∈ C ∪R, ∃x′ ∈ Dx

φ ∪De
φ : x′ 6= x ∧ t(x) ∧ t(x′)

)
With these assumptions, if the response of an inquiry operation contains

multiple instances of some type, these instances describe distinct offers.
The first assumption allows us to treat the multiple instances of the same

type as describing different offers, because they cannot be used together in a
single invocation. It also implies that no offer will contain two different instances
of the same type. The second assumption ensures that we only have one type
with multiple instances; otherwise we wouldn’t know what instance of the first
type describes the same offer as some instance of the second type. Finally, the
third assumption guarantees that no data in the response of an inquiry operation
will conflict with existing data in the current offer.

As part of future work, we plan to investigate how constraining these as-
sumptions are on real-world Web service descriptions, and how we could relax
the assumptions while keeping automated offer discovery possible.

Building on these assumptions, Figure 7.4 shows the formalized algorithm
that implements the function addResponseDataToOffer .

The addResponseDataToOffer algorithm works like this: if a type t exists
that has multiple instances in the response data (line 3), the algorithm extracts
the set D∗ of those instances (line 4). These instances describe the different
offers.

The other instances in the response data (the set D�) are then split into
execution instances (D�x) and extra instances (D�e), depending on whether they
are instances of a needed execution input type or not (lines 5–7). All these
instances apply to all the (potential) multiple offers.
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Function: addResponseDataToOffer(φ,Dout , Tx)
Inputs: offer φ = 〈s,Dx

φ, D
e
φ〉,

response data set Dout from inquiry operation invocation,
the needed execution input types Tx

Result: the set of offers resulting from merging Dout with φ
1 Φ := ∅
2 D∗ := ∅ (a set of multiple response data instances with the same type)
3 if ∃ t :

(
∃x1, x2 ∈ Dout : x1 6= x2 ∧ t(x1) ∧ t(x2)

)
then

4 D∗ := {x | x ∈ Dout ∧ t(x)}
5 D� := Dout\D∗
6 D�x := {x | x ∈ D� ∧ ∃ t′ ∈ Tx : t′(x)}
7 D�e := D�\D�x
8 if D∗ = ∅ then
9 φ′ := 〈s, Dx

φ ∪D�x, De
φ ∪D�e〉

10 Φ := {φ′}
11 for each x ∈ D∗
12 if ∃ t ∈ Tx : t(x) then
13 φ′ := 〈s, Dx

φ ∪D�x ∪ {x}, De
φ ∪D�e〉

14 else
15 φ′ := 〈s, Dx

φ ∪D�x, De
φ ∪D�e ∪ {x}〉

16 Φ := Φ ∪ {φ′}
17 return Φ

Figure 7.4: Supporting Function addResponseDataToOffer

If there is no type that has multiple instances in the response data, the result
is a new offer enriched with the response instance sets D�x and D�e (lines 8–10).
Otherwise, each of the instances in D∗ spawns a new offer that contains this
instance, along with all the instances from the sets D�x and D�e (lines 11–16).
The instance from D∗ is added to the offer’s execution data (line 13) or to the
extra information (line 15), depending on whether or not it is an instance of a
needed execution input type.

Gathering extra information for offer ranking

After invoking the planned inquiry operations, the main algorithm tries to
gather further extra parameters for all the known offers (line 11). This is neces-
sary because the planned operations only satisfy the execution parameters, so it
would never invoke an operation such as getHotelDetails, because the resulting
hotel information is not an execution parameter, and it is not an input to any
other inquiry operations that would return execution parameters.

Figure 7.5 shows the formalized algorithm that implements the function
gatherExtraInformation. In short, this algorithm tries the remaining inquiry
operations (those not involved in the offer discovery plan in the main algorithm),
and invokes those that can return new extra information about the known offers.

At first, on line 1, the algorithm selects the inquiry operations O′q that aren’t
part of the main offer discovery plan and that do not return any execution data,
which would likely conflict with the already-complete offers.

The algorithm then deals separately with each of the input offers (lines 3–
13). For each offer φ, the algorithm starts with the full set of inquiry operations
selected above, and then it selects and invokes any operation o for which the
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Function: gatherExtraInformation(Φ, s,G, P )
Inputs: a set Φ of complete offers; service s with inquiry operations Oq;

user goal G with intended execution operations O′x and instance data DG ,
Tx are the needed execution input types for O′x;
a plan P of operations used to acquire the complete offers Φ

Result: the set of updated offers
1 O′q := {o | o ∈ Oq ∧ o 6∈ P ∧

(
T (out(o)) ∩ Tx

)
= ∅}

2 Φ′ := ∅
3 for each φ ∈ Φ (φ = 〈s,Dx

φ, D
e
φ〉)

4 KB := Dx
φ ∪De

φ ∪DG
5 O∗q := O′q
6 while ∃ o ∈ O∗q :

(
∀t ∈ T (in(o)) : ∃x ∈ KB : t(x)

)
∧

7

(
∃ t ∈ T (out(o)) : ¬∃x ∈ KB) : t(x)

)
8 O∗q := O∗q\{o}
9 Dout := invoke(s, o,KB)

10 φ := 〈s,Dx
φ, D

e
φ ∪Dout〉

11 De
φ := De

φ ∪Dout

12 KB := Dx
φ ∪De

φ ∪DG ∪Dout

13 Φ′ := Φ′ ∪ {φ}
14 return Φ′

Figure 7.5: Supporting Function gatherExtraInformation

offer contains enough input data (line 6), and which can return some extra
information that the offer does not yet have (line 7). The invoked operation is
then removed from further consideration for this offer (line 8), and the current
offer is updated with the new extra information (lines 10–12).

This algorithm may invoke operations whose outputs are not useful for rank-
ing, wasting network and processing resources. Future improvements to the al-
gorithm could add knowledge of types known to the system’s ranking compo-
nent(s), so that only useful data is targeted.

7.3.6 Discussion on Planning for Offer Discovery

Automated planning, developed in the research field of Artificial Intelligence
(cf. [106]), is a process of finding a sequence of actions that takes a system
from a specified initial state to a specified goal state. In offer discovery, we use
planning to find a sequence of operations that will give us information about
the available offers.

Planning problems are specified through an initial state, a goal state, and
the set of available actions. In our case, the initial state consists of the instances
available in the user goal12 (DG), the goal state is that all the needed execution
input types Tx are satisfied by the known data (we want to get complete offers),
and the actions are all the inquiry operations Oq of the given service.

For planning, actions are specified with preconditions and effects, which may
even be complex logical expressions. In WSMO-Lite, each inquiry operation o
is specified through its input and output types sets T (in(o)) and T (out(o)).

12Note that the word “goal” is overloaded here: there is the SWS automation goal from the
user (which we call user goal), and the planning goal state (called goal state for short). The
user goal constitutes the initial state of the offer discovery planning; it has no direct relation
the planning goal state.
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The planning precondition of an offer inquiry operation is that the current
state Si contains instances for all its input types, and the effect of a successful
invocation is that in the following state Si+1 there are new instances of all the
output instances:

precondition : ∀t ∈ T (in(o)) : ∃x ∈ Si : t(x)

effect : ∀t ∈ T (out(o)) : ∃x ∈ Si+1 : t(x)

Since the planning is done before the actual invocation of the operations, we
do not in fact deal with data instances; instead we can simply represent a state
as the set of classes for which instances are assumed to be known, treating each
of the classes as an atomic proposition.

In effect, we can capture our planning problem as a STRIPS instance (cf. [31])
〈S0, Sg, A〉, where S0 is the initial state, Sg is the goal state, and A is the set of
actions. In STRIPS, each action is specified as a triple 〈p+, e+, e−〉, where p+ is
the precondition (a set of propositions that must be true) of the action, and e+,
e− together specify the effect: e+ is the add list, a set of propositions that will
become true after the action, while e− is the delete list, a set of propositions
that will become false.

The initial state S0 of our offer discovery planning problem would formally
be the union of all the sets of types (from an ontology ΩI = (C,R,E, I)) of all
the instances available in the goal. The goal state is simply the set Tx of the
needed execution input types:

S0 := {t | t ∈ C ∪R ∧ ∃x ∈ DG : t(x)}
Sg := Tx

For each inquiry operation o ∈ Oq, we create a STRIPS action a as follows:

p+a := T (in(o))

e+a := T (out(o)) ∪
⋃

t∈T (out(o))

{t̄ | t̄ ∈ C ∪R ∧ t ⊆ t̄}

e−a := ∅
a := 〈p+a , e+a , e−a 〉

The precondition of the action consists of the input types of the respective
inquiry operation. The add list of the action, however, is not only the operation’s
set of output types, but also all the super-classes (or super-relations) of those
types. Note that the initial state S0, shown above, contains all the types of the
user goal instances, which implicitly also includes any super-classes or super-
relations of those types. This allows us to include subsumption relationships
from the underlying ontology, even if we do not support any other reasoning.

The actions in offer discovery planning have empty delete lists e− — we
cannot unlearn something. In our current offer discovery approach, we disregard
the possibility that the state of the service may change during offer discovery,
and that a subsequent inquiry operation would be able to express that. See also
the discussion of replanning at the end of this section.

To solve the STRIPS instance, we use the Graphplan algorithm [14]. Since
there cannot be any conflicts in the planning graph (due to the fact that we do
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not have delete lists), the algorithm runs very efficiently and finds the shortest
partial-order plan.

Static planning with inputs and outputs, as we have described, has proven
to be a very efficient method of planning the offer discovery process. However,
it also incurs limitations, such as the following:

• Related to our third assumption on the structure and function of inquiry
operations (cf. page 142), the plan cannot use an operation that returns
the same type of data that it has as its input. For instance, a retail service
may structure its products into a hierarchy of categories, and it may have
operations such as listProducts(Category) and listSubcategories(Category).
The second operation would never be called because it returns instances
of a type that we already must have in order to be able to invoke the
operation.

• If the invocation of a planned operation fails, the main offer discovery
algorithm simply eliminates the offer, assuming there are no complete
offers with the data presented by this offer. While we listed earlier some
cases where this would be true, it is also possible that an alternate inquiry
operation, one that wasn’t selected for the plan, would return useful offer
data.

• The plan only uses the semantic service description in a limited way (only
considering the input and output types as atomic propositions), therefore
it cannot react to conditions that fall outside the description. For exam-
ple, if a service requires a ProductID for ordering a product, and it has
an operation listProducts that returns the type ProductDescription which
contains the ID, the planner as described above would fail to find a plan,
because it does not know that with a ProductDescription it also gets a
ProductID.

Some of these limitations may be avoided if we employ replanning or other
dynamic approaches (cf. [106]) to react to an environment that is not completely
predictable. For example, if an operation fails, a new plan can be created that
does not use this operation; or if unexpected data comes, a new plan may be
able to use it to get better offer information.

Also, a planner might be able to use more complex reasoning than only sub-
sumption, enhancing the algorithm’s understanding of the inquiry operations.
However, semantic planning is an ongoing research field outside of the scope of
this thesis.

7.3.7 Offer Discovery Conclusions

The offer discovery algorithm described above is intentionally designed to re-
quire the minimal amount of semantics. In particular, if the goal specifies the
intended execution operations, the only semantic annotations necessary for run-
ning offer discovery are operation safety (identifying the inquiry operations) and
the inputs and outputs of all the operations. In the spirit of lightweight semantic
annotation, the less semantics is needed, the easier it is for service providers to
create the semantic descriptions.
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We have described offer discovery independently of the other semantic au-
tomation tasks. Integration of the algorithm with other components of the SEE
can result in useful improvements: for instance, if offer discovery is closer con-
nected with ranking, the list of supported data types in the ranking component
could inform the gathering of extra information. Cooperation of offer discovery
with automated invocation could provide automatic recognition of the intended
execution operations. And through closer integration with functional matchmak-
ing, we could also better evaluate which of the offers returned by the service
for the user’s input data actually fit the user’s goal, if captured using logical
expressions.

We have also mentioned earlier that the algorithm might be improved by
incorporating sensing and replanning aspects, where the offer discovery plan
could react to the actual run-time behavior of the service. Here, we would be
applying nonclassical planning, which includes approaches for partially observ-
able or stochastic environments, as described for instance in Chapters 12 and 17
of [106].

Finally, while offer discovery communicates with third-party services, we
have ignored the considerations of trust and security, which are, in general, well
outside the scope of this thesis. For example, credit card information should be
considered sensitive and as such, it should not be sent to arbitrary services on
the public internet, even if the annotations of a service seem to indicate that
sending credit card information would lead to information about offers.

A simple approach to tackling this problem could make a trust line after ser-
vice selection: the SEE would not communicate any sensitive information to any
services before the user selects a service (and a concrete offer) to execute. The
offer discovery algorithm presented here would need to split the goal instance
data into sensitive and public, using both for satisfying the needed execution in-
put types, but only the public instance data would be used for invoking inquiry
operations.

7.4 Nonfunctional Filtering and Ranking

As discussed in Section 7.1.2, after functional matchmaking and offer discovery
come the steps of filtering (Definition 7.9) and ranking (Definition 7.11) based
on nonfunctional properties of services and offers, with respect to the user’s
constraints and preferences. Services can be filtered and ranked according to
their nonfunctional properties (NFPs), and if offer discovery is performed, the
resulting offers can be filtered/ranked based both on the service NFPs and the
actual offer data. The resulting ranked list will let the user (or the system) select
the best-suitable service/offer to use.

In the following subsections we first analyze selected existing works on non-
functional ranking and filtering, in order to choose a particular approach that
is simple yet powerful enough to demonstrate the suitability of WSMO-Lite for
these tasks. Then we define how this approach models nonfunctional properties
and goals, and finally we describe the actual ranking and filtering algorithm.
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7.4.1 Analysis and Definition of Nonfunctional Filtering
and Ranking

In Chapter 2, we have discussed the main literature on service ranking. Based on
the extensive analysis of nonfunctional service properties provided by O’Sullivan
et al. in [81], Toma et al. proposed in [118] a set of NFP ontologies13 and a multi-
criteria ranking approach that we adapt here to WSMO-Lite.

Where common NFP filtering and ranking approaches such as [94, 70] con-
sider only numerical or keyword values for nonfunctional properties, Toma ar-
gues that such approaches are inflexible and that an ontological representation
with the help of logical expressions allows semantic ranking to provide more
accurate results. In Toma’s approach, the value of a nonfunctional property of
a service may depend on the concrete goal data: the service NFP description
includes logical expressions that compute concrete NFP values at run-time. For
example, given a package described in the goal data supplied by the user, the
NFP expressions can compute the actual price and the expected duration of
shipping the package. Formally, Toma treats the computed NFP values as prop-
erties of the goal data, in context of a given service.

[118] only deals with nonfunctional ranking (based on user preferences), it
does not deal with nonfunctional filtering on user constraints, therefore we pro-
vide a straightforward extension that adds filtering functionality. Compared to
ranking, nonfunctional filtering is a simpler problem where the client specifies
a set of constraints that can be decided over each discovered service through
direct expression evaluation.

There are also approaches to dealing with nonfunctional properties such
as [148] that evaluate client’s requirements on a whole composition of services
(cf. Section 7.6), not independently on each service, as is done in [118]. [148]
uses simple numerical values for nonfunctional properties, but it can easily be
combined with Toma’s semantic approach, therefore our choice of the approach
of [118] is sufficient to demonstrate that WSMO-Lite supports powerful non-
functional filtering and ranking.

7.4.2 Modeling Nonfunctional Properties with WSMO-
Lite

In WSMO-Lite, nonfunctional properties are associated with a service through
model references pointing to instances in a nonfunctional-semantics ontology
ΩN = (C,R,E, I), as shown in Table 4.2 (page 63). The instances can either
carry an actual fixed literal value, or a logical expression used to compute the
value at run-time. In RDF, each nonfunctional property instance is of type wl:
NonfunctionalParameter; data-type predicates on the instance are concrete fixed
nonfunctional values; and logical expressions are attached to the instance with
the predicate rdfs:isDefinedBy.

At run-time, we treat the NFP values (whether the literal values fixed on a
service or the values computed from goal data) as extra parameters of concrete
offers; these values are the same for all the offers of the particular service, and
affect the comparison of offers from different services.

[118] does not provide a strong formalization of their NFP model and ranking

13The NFP ontologies are available at http://www.wsmo.org/ontologies/nfp/

http://www.wsmo.org/ontologies/nfp/
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approach, therefore we offer here a formalization consistent with the semantic
service model from Section 4.3.2, and with the offer model from Section 7.3.

Taking the aggregate of all the nonfunctional property instances attached as
annotations to a single service s, we can represent the nonfunctional properties
of this service as a tuple Ns = 〈Vs, Ls〉 where Vs is a set of actual NFP values,
and Ls is a set of logical expressions. NFP values in Vs are instances14 π(xπ),
where π ∈ R is an NFP property type (e.g. actual price or expected duration
for a delivery service, modeled in the NFP ontology), and xπ is the concrete
numeric value of the given property. The value can either be fixed (expressed
in RDF as an explicit triple), or computed based on a given user’s goal by the
logical expressions in Ls.

To summarize, the concrete form for nonfunctional description of a service
with the approach adapted from [118] is formalized as follows:

W : Ns = 〈Vs, Ls〉
Vs = {π(xπ) | π ∈ R, π(xπ) ∈ E}
Ls = {l1, . . . , ln}
Φs = {φ | φ = 〈s,Dx, De〉 ∧ De ⊃ Vs}

Note that the definition also captures how the nonfunctional properties be-
come part of the extra parameters of all the service’s offers.

7.4.3 Goals for NFP Filtering and Ranking

For nonfunctional filtering and ranking, the user goal must specify the input
data used to calculate run-time NFP values, along with the user’s constraints
and preferences. The constraints define the acceptable ranges of nonfunctional
values, while the preferences set the relative importance of different nonfunc-
tional parameters.

Formally, the input data is a set of instances denoted DG . Client preferences,
in accordance with [118] but using our notation, are expressed as a set PG of
tuples 〈π, rπ〉, where π is an NFP property and rπ is a number between -1
and 1 that defines the relevance of the value of xπ for service ranking. Positive
relevance expresses a desire for higher values of π, whereas negative relevance
means that lower values are preferred.15 The absolute value |rπ| expresses the
importance of π relative to other properties.

Since [118] does not handle nonfunctional filtering, we extend the approach
with a straightforward formalization of user constraints, expressed as a set CG
of logical expressions l1, . . . , lm that are evaluated over concrete offers.

In summary, a goal for nonfunctional filtering and ranking is described as
follows:

G : PG = {p | p = 〈π, rπ〉, π ∈ R ∧ −1 ≤ rπ ≤ 1}
DG = {i1, . . . , in}
CG = {l1, . . . , lm}

14We use the predicate notation same as in Equation 7.2.
15Toma et al. only allow relevance (which they call importance) between 0 and 1, and they

add a global parameter to the goal which controls the ordering of the results; their approach,
however, does not allow the user to prefer lower values of one property and higher values of
another.
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7.4.4 NFP Filtering and Ranking Algorithm

Figure 7.6 shows the ranking algorithm, reflecting the adaptations we made to
the approach of [118]. It works in two steps: first it computes all the NFP values
for all the available services (lines 1–8), filtering out those services that do not
satisfy the goal constraints, and then it computes the ranking value of each
service, based on the goal preferences (lines 9–15). In the end, a higher ranking
value means a better match of the service to the goal.

Algorithm: Web service ranking with WSMO-Lite nonfunctional properties
Inputs: set Φ of all known offers,

sets DG with the input data, CG with goal constraints,
and PG of goal preferences.

Result: a set of filtered offers along with their ranking values
1 Φ′ := ∅ (the filtered offers, including their computed NFP values)
2 V := ∅ (all the NFP values, used for normalization)
3 for each φ ∈ Φ : φ = 〈s,Dx, De〉
4 V ′s := evaluate(Ls, DG)
5 V := V ∪ Vs ∪ V ′s
6 φ′ := 〈s,Dx, De ∪ Vs ∪ V ′s 〉
7 if check(CG , φ

′)
8 Φ′ := Φ′ ∪ {φ′}
9 Φ∗ := ∅ (set of offers and their ranking values)

10 for each φ ∈ Φ′ : φ = 〈s,Dx, De〉
11 rφ := 0
12 for each π : π(xπ) ∈ De, 〈π, rπ〉 ∈ PG
13 mπ := max ({ |x|

∣∣ π(x) ∈ V })
14 rφ := rφ + rπ

xπ
mπ

15 Φ∗ := Φ∗ ∪ {〈φ, rφ〉}
16 return Φ∗

Figure 7.6: NFP-based Web service ranking algorithm for WSMO-Lite

On line 4, the function evaluate encapsulates reasoning over the logical ex-
pressions in the service’s nonfunctional properties to compute the NFP values.
The result of the function is a set of NFP values with the same structure as Vs
defined above.

On line 7, the function check encapsulates reasoning over the logical expres-
sions in the goal constraints, returning true if all the expressions in CG were
satisfied by the nonfunctional properties of the offer φ′. If so, the offer is added
to the filtered set Φ′ of all the offers that satisfy the goal constraints.

For each such offer, lines 11–14 compute its ranking value as a sum of the
normalized value xπ

mπ
of every nonfunctional property π (mπ is the maximum

absolute value of the property π among the known offers) multiplied by the
relevance rπ from the goal preferences.

After the services have been ranked, one should be selected for use. The
selection process is discussed in the following section.

7.5 Final Service/Offer Selection

After functional service discovery finds suitable services for a goal, and offer
discovery optionally obtains applicable offers, nonfunctional filtering and rank-
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ing sorts the services or offers based on the client’s constraints and preferences.
Ultimately, one or more of the services or offers may be selected for invocation,
to actually use a service, or to accept an offer. In this section, we discuss consid-
erations around the selection from the ranked list of services or offers in various
scenarios that would employ semantic discovery.

Note that the following text only deals with offers; if offer discovery is not
performed, each discovered service can be seen as a single trivial offer, and
repeating the words “services or offers” in the text would harm its readability.

Offer selection can be automatic (simply the best-ranked offer), or manual,
giving the ranked list of offers for review to a human user.

Automatic selection is suitable in settings with high-quality data: the
service registry must contain reliable (complete, correct, up-to-date) service
descriptions, and the client goal must be detailed enough to avoid functional
false-positives, and to express a sufficient degree of nonfunctional constraints
and preferences that the top-ranked offers are always acceptable. For example,
an enterprise may maintain an internal vetted registry of the services of con-
tracted business partners, classifying them in strictly non-overlapping functional
categories, and describing fully their relevant nonfunctional properties such as
price. An ordering system within such an enterprise may automatically select
the cheapest service for a given category of supplies that are needed at the
moment.

Even though automated selection will always choose the best-ranked offer,
the remainder of the ranked offers list may still be useful, mainly for failover: if
the selected offer fails (because of a service or network failure, or other runtime
factors), the system may simply move to the next-best offer. By keeping the
ranked offers list, such a system may avoid repeating the potentially expensive
discovery and ranking steps.

On the other hand, manual selection is suitable when it is desirable to have
a human review the ranked list of offers to verify which one(s), if any, should
be invoked. There are a number of possible reasons why human review could
be desirable: i) the data in the service registry may not be completely reliable
or trustworthy; ii) the client goal may not fully capture the user’s needs and
preferences; or iii) a human user may simply not intend immediate invocation,
instead they may be browsing the offers to see what is available.

The first two cases both boil down to formal insufficiencies in the inputs
to discovery and ranking. In the first case, the service descriptions may contain
errors or omissions, and in the second case, the client goal may be underspecified.
The focus of our work on the use of lightweight semantics implies that service
providers, and clients, should not be required to define every minute detail
of their services and goals in a formal logic. In effect, a manual review of the
ranked list of offers is balanced against the ease of use of the lightweight semantic
system: time and effort is saved on describing the services and formulating the
goals, the matchmaking and ranking engine works faster because it does not have
to deal with high expressivity, and in the end, some time is spent on manual
selection. Therefore, manual offer selection naturally complements automation
based on lightweight semantics.

In cases when the service invocation to accept an offer is safe16, the first
entry (or the first few entries) of the ranked list can be enriched with the results

16A safe interaction in terms of Web architecture.



152 Chapter 7. Algorithms for Service Discovery and Composition

of invocation. This kind of enrichment is common in Web search: the search
engine Google, when asked for “weather in Rome”, returns a list of Web sites
about weather and Rome, but the first result is immediately the current and
forecast weather. Similarly in SWS discovery, if the first offer/service in the
ranked list is invoked prior to returning the list to the client for manual selection,
the invocation results may be immediately useful for the user. In effect, such
opportunistic invocation increases the usage efficiency of the system, at the cost
of performing potentially unnecessary (but safe) invocations.

In summary, even though selection seems a trivial task after discovery and
ranking, SWS automation systems should support a manual human review of
the ranked list of discovered services and offers. Involving the user in key points
of an automated process improves the transparency and thus the perceived
trustworthiness of the system.

7.6 Service Composition

As defined at the beginning of this chapter, Web service composition is the
process of combining existing services in such a way that they provide a desired
functionality; it is used especially in cases when the whole desired functionality
is not offered by any single available service. The result of a service composition
process is a composite service.

As discussed in Chapter 2, there are many different approaches to automated
service composition. For the tractable functional-level composition, [68] repre-
sents approaches that match services into a sequence based on their inputs and
outputs, and [42] is an example of more expressive approaches that use the
preconditions and effects of Web services. Process-level composition approaches
such as [91] take into account the behavioral interfaces of the composed services,
treating services as processes rather than atomic functions.

The result of Web service composition may simply be a linear sequence of
services (e.g. [42]), or it can be a non-linear composition with parallel and/or
conditional branches ([68, 91]).

In this section, we adapt to WSMO-Lite the composition approach from
Hoffmann et al. [42]. This chosen approach illustrates how WSMO-Lite can
support powerful composition with service preconditions and effects, without
delving into the complexity of process-level composition. While the algorithm
produces linear compositions, it is a property of the algorithm — WSMO-Lite
can just as well support more complex composition approaches.

In the following subsections, we first define the formalism we use for the
adapted approach, and then we show the actual composition algorithm.

7.6.1 Composition Formalism

The composition algorithm of Hoffmann et al. is defined using a formalism that
is independent of the underlying SWS technology; here we show how it can be
used with WSMO-Lite. We only show a subset of the formalism that is required
to explain the high-level functioning of the algorithm adapted to WSMO-Lite.

In the formalism, Web services are represented with their preconditions and
effects. In WSMO-Lite, these are captured as a capability K (kappa, see Sec-
tion 4.3.2). Further, client goals are defined by Hoffmann et al. through precon-



Section 7.6. Service Composition 153

ditions and effects, where the precondition serves only as the supply of initial
constants. Therefore, we capture a goal directly as the desired effect and the set
of initial constants:

W : K = (Σ, φpre , φeff )

G : ψeff (x1, . . . , xn)

DG = {i1, . . . , im}

where the effect logical expression ψeff (x1, . . . , xn) describes the desired goal
models, and DG represents the initial set of constants for the algorithm.

Note that the description of the Web services and goals for composition here
is compatible with the descriptions for functional matchmaking with precondi-
tions and effects (Section 7.2.2): descriptions tailored for fine-grained discovery
can be used for automatic composition as well.

The composition algorithm of Hoffmann et al. follows Winslett’s possible
models approach [128] to define the semantics of updates that occur when a
Web service is applied to a given expected state. The algorithm is built on a
notion of beliefs: a belief is captured as a set of models that are considered
possible; i.e., at each point in a composition, our uncertainty about the true
state of the execution is expressed in terms of the set of models that may be
possible. An initial belief b0 is created from the background ontology and the
constants in DG . A solved belief is such a belief whose all models fulfill the
desired goal effect.

Given a belief b and a service s, the result of applying s in b is a new belief
(a set of models), denoted apply(b, s). Each of the new models captures one possi-
ble way the old belief can be updated to reflect the service’s effect φeff . Creating
new models that satisfy a given logical expression is called update reasoning, and
it is a known hard problem (cf. [41]). Hoffmann et al. use approximate reason-
ing with Horn theories, which they show to be tractable. The detailed formal
definition of the function apply(m, s) can be found in [42]; the gist of their ap-
proximate reasoning is that the algorithm computes an under-approximation
and an over-approximation of the statements that hold after applying service s
in model m. These two approximations are then used to check for solutions, as
we discuss below.

7.6.2 Composition Algorithm

Figure 7.7 outlines the composition algorithm, with updates from [42] to adopt
WSMO-Lite terminology. The overall structure of the algorithm is typical for
state-space search algorithms (see [106]). The inputs are the known services and
the goal, and a successful output is a sequence of service applications that solves
the goal. The algorithm searches in a space of beliefs that correspond to states
in a typical AI planning search. The initial belief b0, created on line 1, combines
the background ontology with the goal data.

The algorithm works with a so-called open-list O, which contains all the
beliefs that have yet to be processed; initially, that is only the belief b0 (see
line 3). In the open-list, each belief is kept in a 4-tuple 〈b, h,H, p〉, where b is
the belief itself, p is the path that leads to this belief (a sequence of Web service
applications), and h and H are additional values returned by a heuristic function
that can help guide the search. The value of h is an estimate on how many Web
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Algorithm: forward-search Web service composition for WSMO-Lite
Inputs: set S of known services annotated with capabilities,

ψeff (x1, . . . , xn) defining the goal models,
DG with the initial constants.

Result: a list of Web services to be applied in a sequential composition
1 b0 := initialBelief (DG)
2 (h,H) := heuristicFunction(b0)
3 O :=

(
〈b0, h,H, ()〉

)
4 while O 6= ∅
5 〈b, h,H, p〉 := selectAndRemoveBest(O)
6 if isSolved(b) then return p
7 for each s ∈ H do
8 b′ := apply(b, s)
9 if b′ is undefined then next s

10 (h′, H ′) := heuristicFunction(b′)
11 add(O, 〈b′, h′, H ′, add(p, s)〉)
12 abort “no solution exists”

Figure 7.7: Web service composition algorithm for WSMO-Lite

services still need to be applied to b in order to obtain a solution (in other
words, how close to the solution the belief appears to be), and H is a subset
of all the available Web services that the heuristic function deems applicable to
b. The heuristic value h guides the algorithm to the most appropriate beliefs in
the search graph, and the set H prunes the search graph by dropping unwanted
services.

The main loop on lines 4–11 executes until the open-list is empty, or until
the solution is found. At every step, it selects the best next belief for processing
(as indicated by the heuristics) and removes it from the open-list (line 5). As
presented, the algorithm is a “greedy best-first search” [106], but it can be
changed effortlessly to other search algorithms, such as A* which is commonly
very efficient in finding a solution.

Having selected the next belief, we compare it on line 6 with the goal, using
the function isSolved . If the goal effect is satisfied in the belief, we have found
a solution and the algorithm ends. With the tractable approximate update rea-
soning used by Hoffmann et al., a solution is guaranteed if the goal effect is
satisfied in the under-approximated view on the current belief, and a solution
is only potentially found if the goal effect is satisfied in the over-approximated
belief. In an iterative system, the search algorithm could return all the poten-
tial solutions it encounters while continuing to search for a guaranteed solution,
increasing the responsiveness of the user interface.

If the solution has not been reached yet, we expand the currently-selected
belief: we generate new beliefs by applying the available Web services (in the
loop on lines 7–11). Applying the Web service s on the belief b (line 8) leads to a
changed belief b′, which is added to the open-list, along with its heuristic values
and the updated path (lines 10 and 11). If the Web service s is not applicable
to the belief b (either its precondition does not apply, or its effect leads to a
contradiction), we simply skip this service and move to the next one (line 9).

If the open-list becomes empty, the algorithm has explored the entire search
space without finding a solution, and it ends (line 12).
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After the algorithm finds a composition solution, whether a potential one
found with the over-approximated reasoning, or a solution guaranteed by the
under-approximated reasoning, the composition can be presented to the user,
who may need to fill in details of data or process mediation (e.g. [20, 78]). If
multiple potential solutions are found, it can be useful to rank them according
to the nonfunctional properties of the constituent services, using a ranking algo-
rithm such as the one presented in Section 7.4, adapted to aggregate the NFPs
of multiple services in a composition, as discussed in Section 2.1.4.

For further details on the approximate reasoning and on possible heuristics
for the composition algorithm, we refer the reader to [42, 43].
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Chapter 8

Implementations

The preceding chapter of this thesis showed how semantic Web service descrip-
tions can be used for automating service discovery and various other tasks in-
volved in the use of Web services. In this chapter, we discuss various kinds of
implementations that are directly pertinent to the evaluation of the languages
proposed in Part II of this thesis, including an implementation of several se-
mantic discovery techniques.

Section 8.1 introduces the SOA4All Studio, an example of a comprehen-
sive Semantic Execution Environment. As a selection of the Studio’s compo-
nents, Section 8.2 discusses parsers for the languages proposed by this thesis,
Section 8.3 describes a service registry for WSMO-Lite semantic descriptions,
and Section 8.4 shows two service description editors.

8.1 Semantic Execution Environment

WSMO-Lite is intended to support automation of the use of Web services, thus
the main implementation is in tools that realize automation algorithms such
as those presented in the preceding chapter. The Semantic Execution Environ-
ment Technical Committee1 (SEE TC) at OASIS, the leading standardization
body for WS–∗ Web services, sees such tools as parts of a Semantic Execution
Environment (SEE), which employs semantic technologies to support users in
achieving their goals with Web services.

The draft Reference Architecture for Semantic Execution Environments [56]
adapts the view of a Semantically-enabled Service Oriented Architecture (SESA)
from [126], shown here in Figure 8.1. The main contribution of this thesis, the
languages presented in Chapters 4–6, fits in the formal languages component
at the base of the SEE. Chapter 7 shows algorithms that mainly support the
discovery, adaptation and composition components.

WSMO-Lite is the cornerstone of a semantic execution environment called
SOA4All Studio [66], developed through cooperation of several project part-
ners in the research project SOA4All.2 On top of a service registry (the storage
component at the base of the SEE), it implements the components for discov-

1http://oasis-open.org/committees/tc_home.php?wg_abbrev=semantic-ex
2http://soa4all.eu, a prototype of the Studio is accessible at http://coconut.tie.nl:

8080/dashboard
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specialized applications. For example, users can perform electronic exchange of information to ac-
quire or provide products or services, to place or receive orders or to perform financial transactions.
In general, the goal is to allow users to interact with business processes on-line while at the same
time reduce their physical interactions with back-office operations. On the other hand, the group
of engineers form those stakeholders which perform development and administrative tasks in the
architecture. These tasks should support the whole SOA lifecycle including service modeling, cre-
ation (assembling), deployment (publishing), and management. Different types of engineers could
be involved in this process ranging from domain experts (modeling, creation), system administrators
(deployment, management) and software engineers.

4.2 Problem Solving Layer

The problem solving layer contains applications and tools which support stakeholders during for-
mulation of problems/requests and generates descriptions of such requests in the form of user goals.
Through the problem solving layer, a user will be able to solve his/her problems, i.e. formulate a
problem, interact with the architecture during processing and get his/her desired results. This layer
contains back-end systems which directly interface the middleware within business processes, spe-
cialized applications built for specific purpose in a particular domain which also provide specific
domain ontologies, and developer tools providing functionality for development and administrative
tasks within the architecture.

Developer tools provide a specific functionality for engineers, i.e. domain experts, system admin-
istrators and software engineers. The functionality of developer tools cover the whole SOA lifecycle
including service modeling, creation (assembling), deployment (publishing), and management. The

Figure 8.1: A global view of a Semantically-enabled Service Oriented Architec-
ture, Figure 1 from [126]

ery, adaptation (ranking), composition and monitoring. The Studio provides a
number of user and developer tools, including editors for semantic service de-
scriptions, and discovery, ranking, assisted composition, monitoring and analy-
sis tools. Figure 8.2, adopted from [66], shows the Studio as a front-end of the
whole SOA4All platform.

In the following sections, we focus on several critical components and tools:

• Section 8.2 presents parsers that read semantic service descriptions in
WSDL/SAWSDL or HTML/hRESTS and turn them into RDF data that
follows the service model presented in Section 4.4 (page 62); the RDF form
is then used for processing in other components and tools.

• Section 8.3 describes a service registry for WSMO-Lite semantic descrip-
tions, along with its high-level discovery API.

• Section 8.4 shows two tools that support the process of creating semantic
service descriptions, covering WS–∗ services on one side and RESTful
APIs on the other.

Our direct contributions to the implementations: The author of this
thesis has been directly involved in two of these implementations: the parser
for HTML/hRESTS descriptions (wholly developed by the author), and the
service registry (where the author mainly implemented the service discovery
API and algorithms). The remainder of the implementations was developed by
the author’s research partners.
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Figure 8.2: SOA4All Architecture, taken from [66]

8.2 Service Description Parsers

Our lightweight semantic Web service description languages build on underlying
structured and semi-structured data formats, in particular XML (WSDL) and
HTML (hRESTS). As we propose semantic processing to happen on RDF data,
the underlying descriptions must be parsed into the RDF form. As discussed in
Section 4.4, the parsed RDF graph should be treated as a read-only view on the
underlying description.

The general role of a parser is to load a document as a stream of characters
and to return a structured model of the information contained in the document.
In our case, we need a parser for SAWSDL data in WSDL documents, and
another for MicroWSMO/hRESTS data in HTML documents. The following
two subsections detail these two parsers.

8.2.1 SAWSDL Parsers

In the context of WS–∗ languages, there are a number of pieces of software that
can be called WSDL and SAWSDL parsers (e.g. WSDL4J3 and SAWSDL4J4,
EasyWSDL and EasySAWSDL5); their purpose is to simplify programmatic
manipulation of WSDL and SAWSDL documents. In the context of our work,
though, we need a parser that reads SAWSDL documents and produces the
RDF view along the service model from Section 4.4.

3http://sourceforge.net/projects/wsdl4j/
4http://sawsdl4j.sourceforge.net/
5Both available at http://easywsdl.ow2.org/

http://sourceforge.net/projects/wsdl4j/
http://sawsdl4j.sourceforge.net/
http://easywsdl.ow2.org/


160 Chapter 8. Implementations

The SOA4All project has produced such a WSMO-Lite oriented SAWSDL
parser, based on the EasySAWSDL library. The core functionality is a straight-
forward implementation of the mapping between the WSDL component model
and the WSMO-Lite service model, defined in Table 5.2 (page 80). Importantly,
to support all the semantic description deployment options (see Section 5.3),
the parser should include in its output any RDF statements embedded in the
source WSDL document.

Figure 5.2 (page 82) shows a consolidated example of a SAWSDL description
and its mapping to RDF, performed by the SOA4All parser.

8.2.2 hRESTS/MicroWSMO Parser

As hRESTS and MicroWSMO are microformats, the mapping of hRESTS/Mi-
croWSMO descriptions into RDF can be implemented through GRDDL [35],
a mechanism for extracting RDF data from Web pages, particularly suitable for
dealing with microformats. With GRDDL, the Web page is processed by one
or more XSLT transformations that output RDF triples; the result is an RDF
view on the content of the page.

We have provided a combined GRDDL XSLT transformation6 that han-
dles both hRESTS and its MicroWSMO annotations. This transformation can
be used directly to translate hRESTS/MicroWSMO service descriptions into
RDF, for instance when a description is submitted to a registry, as described in
Section 8.3.

Furthermore, in accordance with GRDDL, an XHTML document that con-
tains hRESTS (and MicroWSMO) data can itself link to the XSLT transforma-
tion from its header metadata:

<head profile=”http://www.w3.org/2003/g/data−view”>
<link rel=”transformation”

href=”http://cms−wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt” />
... further metadata, especially page title ...

</head>

This header enables Web browsers, crawlers and other tools to extract the
RDF form of the service description data, even if the tools are not specifi-
cally aware of the hRESTS and MicroWSMO microformats. With this GRDDL
header, hRESTS/MicroWSMO service descriptions can become part of the Web
of linked data [11].

In Chapter 6, Listing 6.5 (page 105) shows the RDF data extracted from an
example MicroWSMO description from Listing 6.4, using our GRDDL XSLT
transformation.

8.3 Service Registry, Discovery API

The SOA4All Studio is backed by iServe [89], a semantic service description
registry7 built to support WSMO-Lite. Beside using the semantic RDF model
internally, iServe also publishes all its data in an open manner according to
the Linked Data principles [13, 88].

6At http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt
7Accessible at http://iserve.kmi.open.ac.uk/

http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt
http://iserve.kmi.open.ac.uk/
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The registry is fully based on the WSMO-Lite service model, supporting
service descriptions in WSDL/SAWSDL and in hRESTS/MicroWSMO. Sup-
port for the RDFa syntax alternative to hRESTS, described in Section 6.2.4,
is planned. Additionally, iServe is also capable of importing OWL-S service
descriptions and treating them as WSMO-Lite descriptions. This importing ca-
pability is particularly used for evaluation with the OWL-S retrieval test collec-
tion8, as shown in Chapter 9.

iServe provides a browser GUI for human usage, and a set of RESTful APIs
for programmatic access. The browser GUI, a Web-browser-based application,
is shown in Figure 8.3, with service categorizations on the left, a list of services
in the top-right part, and the details of a selected service in the bottom-right
part. It supports simple browsing and searching of services, and direct queries
with SPARQL [114].

Figure 8.3: A screenshot of the iServe browser GUI, taken from [65]

The RESTful APIs provide support for accessing and submitting service
annotations and service documentation, and high-level discovery capabilities.
The following subsection provides further details on the iServe discovery API.

8.3.1 iServe discovery API

In line with the general RESTfulness of the registry, discovery functionality is
made available through a Web API; as such, it deserves a more detailed descrip-
tion here. Currently, iServe implements three types of discovery: i) discovery
with functionality classifications, ii) matching of input and output signatures,

8http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/
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and iii) statistical similarity-based approximate matchmaking. The first two
types only take into account direct logical relationships between semantic con-
cepts, whereas the third uses information retrieval techniques that avoid strict
logical false negatives.

The functionality-classification-based discovery implements the algorithm
described in Section 7.2.1, using functionality taxonomies in RDFS and on
SKOS. The statistical text-similarity matchmaker is based on iMatcher [59].
Chapter 7 only describes the first type of discovery because the adaptation of
the other two to WSMO-Lite is straightforward.

The discovery API offered by iServe is structured as follows:

/data/disco/func-rdfs?class=C1&class=C2&...

uses RDFS functional classification annotations and returns those services
that are related to all the functional categories Ci (which are URIs of
RDFS classes).

/data/disco/func-skos?concept=C1&concept=C2&...

same as above, using SKOS concepts instead of RDFS classes.

/data/disco/io-rdfs?i=CI1&i=C
I
2&o=C

O
1 &...

uses ontology annotations of inputs and outputs and returns services for
which the client has suitable input data (CIi ) and which provide the out-
puts requested by the client (COi ).

/data/disco/imatch?strategy=levenshtein&label=L
returns all services ranked according to string similarity of the service label
with the string L.

In the spirit of using Web standards, the API represents discovery results
as Atom feeds [4], with the entries representing matching services, sorted by
matching degree. The Atom feed format was chosen for several reasons: it is a
standard generic container format with wide support in software libraries and
products, and it defines strong metadata properties (such as titles, identities
and update times) that make feed readers a meaningful standalone software
category. With Atom, iServe discovery queries can, for example, be syndicated
and manipulated in generic systems such as Yahoo! Pipes9, or end users can
watch for new interesting services by registering iServe discovery queries in
their feed readers.

The common representation of discovery results as Atom feeds can be ex-
ploited for supporting arbitrary combinations of discovery approaches through
list operations on the results of separate discovery queries. iServe includes three
Atom feed combinators:

1. Union: the resulting feed contains the entries of all the constituent feeds.
For discovery queries, the union of results is equivalent to the or (dis-
junction) operator: a service is returned if it matches any of the given
queries.

2. Intersection: results in a feed with only the entries that are present in all
the constituent feeds. This is equivalent to the and (conjunction) operator
for discovery queries.

9http://pipes.yahoo.com

http://pipes.yahoo.com
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3. Subtraction: results in a feed with the entries of the first feed that are not
in any other provided feed. In discovery, this enables the and not operator:
it can return services that match one query but not another.

All these combinators are part of iServe’s RESTful API, and they take feed
URIs as parameters. To illustrate the use of the discovery API, including the
Atom combinators, the following URI would discover proximity search services
that take as inputs a raw address (proximity search and raw address are terms
in an ontology used to annotate a set of geography services present in iServe):

http://iserve.kmi.open.ac.uk/data/atom/intersection?

f=/data/disco/func-rdfs?class=

http://iserve.kmi.open.ac.uk/2010/05/s3eval/func.rdfs%2523ProximitySearch

&f=/data/disco/io-rdfs?i=

http://iserve.kmi.open.ac.uk/2010/05/s3eval/data.rdfs%2523RawAddress

The example contains altogether five URIs: the location of the intersection
combinator, the location of the RDFS functional classification discovery service
(note that the URI is relative to the atom combinator URI), the identifier of
a class of proximity search services, the location of the RDFS input/output
matchmaker and the identifier of the concept of a raw address. Note that the
nesting of URIs requires careful percent-encoding of special characters: for in-
stance the hash sign ‘#’ is encoded as ‘%23’ and the percent-sign is encoded
again as ‘%25’ because the URI with the hash sign is nested in two others.

The separation of the individual discovery algorithms from the mechanism by
which they are combined supports easy extensibility: new discovery algorithms
can be added to iServe independently (as plug-ins) and then usefully combined
with the algorithms that are already there.

8.4 Semantic Description Editors

To ease the acquisition of semantic service descriptions, SOA4All Studio
supports service providers (or interested third parties) in creating semantic de-
scriptions for Web services, both WS–∗ and RESTful.

Describing Web services semantically is a knowledge-intensive task that we
cannot fully automate, but tools can support it in several ways: i) by suggesting
appropriate ontologies, ii) by verifying some consistency and completeness cri-
teria (see Sections 5.4 and 6.7), and also iii) by guiding a user through the steps
of a semantic service description methodology. For instance, the OASIS SEE
Technical Committee is considering a proposed methodology called MEMOS
(A Methodology for Modeling Services [57]), which should be directly applica-
ble to WSMO-Lite as well as other SWS frameworks.

The SOA4All Studio contains two separate semantic description editors,
called SWEET and SOUR:

• SWEET (“Semantic Web sErvices Editing Tool” [71]) is an editor for
hRESTS and MicroWSMO. It is a Web-browser-based application10 that
supports the creation of semantic descriptions of Web APIs. SWEET
takes as input an HTML Web page describing a Web API, and it allows

10SWEET is accessible at http://sweet.kmi.open.ac.uk/

http://sweet.kmi.open.ac.uk/
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Figure 8.4: The user interface of SWEET (taken from [71])

Figure 8.5: The user interface of SOUR
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the user to mark up the service structure (with hRESTS) and to annotate
it with semantic information (with MicroWSMO).

SWEET is shown in Figure 8.4. Its user interface has three main parts: the
central panel contains the HTML description of a selected Web API; the
right-hand-side panel shows the allowed and recommended annotations,
both for the hRESTS structure (shown) and for semantic properties; and
the left-hand-side panel visualizes the current service model structure of
the documentation.

SWEET assists users in locating appropriate annotations from among
the existing ontological data on the Web, and it fosters ontology reuse, by
integrating the ontology search engine Watson11.

• SOUR [73] is an semantic annotation editor for WSDL and SAWSDL.
It is a browser application12 that supports adding (and manipulating)
semantic annotations in WSDL and XML Schema descriptions, according
to the distribution of the kinds of semantics defined in Table 5.1.

SOUR is shown in Figure 8.5. Its user interface also has three main parts:
the main panel on the right-hand side displays the hierarchical structure of
a WSDL document, where the user can see and manipulate the semantic
annotations; the bottom “WSDL Preview” panel shows the XML source
code of the selected WSDL element, highlighting any semantic annota-
tions; and finally the “Semantic Models” panel on the left shows loaded
ontologies from which the user can select semantic elements to annotate
the WSDL document.

The semantic description editors are complemented by a Grounding Edi-
tor [110], also available in the in the SOA4All Studio. The grounding editor
has a drag-and-drop user interface that supports the creation of mappings be-
tween XML Schemas and ontologies, from which it can generate the appropriate
XSLT lifting and lowering transformations for XML data.

In summary, Web Service and API providers or interested third parties can
use SWEET and SOUR as a user-friendly way of preparing semantic service de-
scriptions, enabling tool support for discovery and so on. While SOUR presents
a common view of WSDL documents for annotation with SAWSDL, SWEET
starts with Web API documentation in HTML and supports annotation with
hRESTS and MicroWSMO. Both tools have integrated support for submitting
to the iServe registry: when the user completes the semantic annotation of the
HTML or WSDL description, the result can be published in iServe, or it can
be saved locally.

11Watson Semantic Web Search, http://watson.kmi.open.ac.uk
12SOUR is accessible at http://stronghold.ontotext.com:8080/wsmoliteeditor/

http://watson.kmi.open.ac.uk
http://stronghold.ontotext.com:8080/wsmoliteeditor/
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Chapter 9

Evaluation

The main contribution of this thesis comprises the languages defined in Part II.
In the preceding chapters, we have defined several SWS automation algorithms
that use these languages, and we have detailed numerous tools and libraries that
constitute implementations of the languages. Here, we evaluate the languages
from several angles, aiming to demonstrate that they are viable, that they carry
no adverse effects on system performance, and how they compare to main other
existing SWS approaches.

In Section 9.1, we describe the methodology that guided our evaluation ef-
forts; Section 9.2 discusses the viability of the languages, Section 9.3 focuses
on their performance, and Section 9.4 compares them to the state of the art in
Semantic Web Services.

9.1 Evaluation Methodology

Throughout this thesis, we have stressed the need for lightweight semantics for
Web services, especially including RESTful APIs that have seen limited atten-
tion from Web service automation researchers. The languages we have presented
directly address the need: WSMO-Lite covers service semantics, and hREST-
S/MicroWSMO support RESTful APIs; these languages are the primary con-
tribution of this thesis. In this chapter, we evaluate this contribution from three
angles: viability (will it work?), performance (will it work effectively and ef-
ficiently?), and by comparing it to the state of the art (does it have advan-
tages/disadvantages over other approaches?).

In effect, we are checking here our main success criteria, as stated in
Chapter 1: i) that our service semantics ontology is sufficiently expressive to
support the desired degree of automation (comprising service discovery, selection
and composition), and ii) that the automation works equally well with RESTful
services as it does with WS–∗ services.

To demonstrate viability (or fitness for purpose) of WSMO-Lite, we have
adapted to it a number of automation algorithms, we have discussed imple-
mentations that are now relatively mature, and we have performed a practical
exercise that included annotating a set of real-world services, and comparing
of WSMO-Lite discovery in iServe with a set of discovery tools for other ap-
proaches (discussed below). All these points are put together in Section 9.2.
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To evaluate the performance of WSMO-Lite, we have used a common goal-
based evaluation method of comparing various systems on a benchmark task,
where we have focused on discovery, a heavily-researched part of SWS automa-
tion that even runs an annual public contest. The results are shown and analyzed
in Section 9.3.

Finally, we have also performed a goal-free evaluation of the WSMO-Lite
languages by comparing them to the main existing SWS frameworks, OWL-S
and WSMO, and to WSDL-S, the visionary lightweight framework that led to
SAWSDL. We have uncovered some potential advantages and some potential
disadvantages of WSMO-Lite, as discussed in Section 9.4.

Ultimately, the goals for the lightweight languages presented in this thesis
are: i) to stimulate convergence of existing SWS technologies on top of SAWSDL
(and to include RESTful APIs), and ii) eventually to make Semantic Web Ser-
vice technologies easier to use and thus to foster their adoption. Our success
on these goals can only be evaluated in time; for now, we can quote the W3C,
which stated in the Team Comment to the WSMO-Lite submission [27], that
“it is a useful addition to SAWSDL for annotations of existing services and the
combination of both techniques can certainly be applied to a large number of
semantic Web services use cases.”

As of this writing, we know of two collections of WSMO-Lite service descrip-
tions: the semantic service registry iServe knows about over 2000 service de-
scriptions1, and the WSMO-Lite Test Collection [17] contains over 1000 service
descriptions, adopted from the test collections OWLS-TC and SAWSDL-TC.2

9.2 Fit-for-Purpose Evaluation

The viability (fitness for purpose) of the languages is demonstrated in a number
of places throughout this thesis; let us summarize it here in the order of the
life cycle of semantic service descriptions: descriptions are first created, then
stored (published) somewhere, and finally processed for discovery and other
automation purposes.

Creation of service descriptions: a major principle guiding our work has
been to keep the languages lightweight, in order to ease the creation and author-
ing of WSMO-Lite descriptions. In Section 8.4, we have described two published
editor (SWEET, SOUR) tools that support hRESTS/MicroWSMO and WS-
DL/SAWSDL, respectively.

Authoring WSDL descriptions is a well-known and settled area, with existing
tools3 ranging from syntax-highlighting XML editors to graphical editors based
on the structure of WSDL. The tool SOUR provides simple drag-and-drop
editing capabilities for extending WSDL files with SAWSDL annotations.

In contrast to the maturity of WSDL editing support, annotating the HTML
documentation of RESTful services is still a research area with much space for

1From http://iserve-dev.kmi.open.ac.uk/iserve/ in October 2012.
2http://semwebcentral.org/projects/owls-tc/ and http://semwebcentral.org/

projects/sawsdl-tc/
3To point out a few: http://www.liquid-technologies.com/wsdl-editor.aspx, http://

wiki.eclipse.org/index.php/Introduction_to_the_WSDL_Editor, http://www.oxygenxml.

com/wsdl_editor.html

http://iserve-dev.kmi.open.ac.uk/iserve/
http://semwebcentral.org/projects/owls-tc/
http://semwebcentral.org/projects/sawsdl-tc/
http://semwebcentral.org/projects/sawsdl-tc/
http://www.liquid-technologies.com/wsdl-editor.aspx
http://wiki.eclipse.org/index.php/Introduction_to_the_WSDL_Editor
http://wiki.eclipse.org/index.php/Introduction_to_the_WSDL_Editor
http://www.oxygenxml.com/wsdl_editor.html
http://www.oxygenxml.com/wsdl_editor.html
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further exploration. For example, some RESTful APIs have documentation that
is not a close fit to the hRESTS structure of a list of operations with their
separate inputs and outputs, in which case an editor tool such as SWEET
will likely need to use the flexible RDFa form of hRESTS and MicroWSMO
discussed in Section 6.2.4.

The development and use of the mentioned two editor tools, free of sig-
nificant issues against our languages, has shown that creation of WSMO-Lite
descriptions can be effectively supported for both major kinds of Web services.
As discussed in the next section, for performance evaluation we have also anno-
tated 50 existing Web services and achieved good discovery results with minimal
annotation effort; this also indicates that creation of WSMO-Lite descriptions
is well possible.

Publishing service descriptions: for the storage and publishing of WSMO-
Lite service descriptions, Section 8.3 describes the public registry iServe. As of
August 2011, the registry contains more than 2000 service descriptions.

iServe is used as the service registry in the EU projects SOA4All and
NoTube [147]. Below, in Section 9.3, we show a performance evaluation of
WSMO-Lite discovery, as implemented by iServe.

Processing service descriptions: Chapter 7 describes several semantic ser-
vice automation algorithms directly adapted to the WSMO-Lite service model
and semantics. The discovery algorithms in particular are implemented in the
iServe registry and they are evaluated in more detail below, showing that they
perform on par with state-of-the-art service matchmakers for other SWS frame-
works. This gives us confidence that further SWS algorithms can be adapted to
WSMO-Lite without loss of functionality, and that WSMO-Lite is therefore a
viable SWS description approach.

We do not intend to imply that the adapted algorithms are the most efficient
or the most user-friendly; they are a selection of common and proven approaches,
on which we can easily demonstrate how such algorithms can be adapted to
WSMO-Lite. By using known and tested approaches, we show how SWS research
may converge on a technology like WSMO-Lite that is close to Web Services
practitioners. Importantly, when adapting the algorithms to WSMO-Lite, we
have not encountered significant challenges or obstacles, beyond the expected
vocabulary alignments. In other words, WSMO-Lite is not leaving the existing
body of research on SWS automation algorithms behind.

Note that WSMO-Lite is the only SWS approach that we know which sup-
ports offer discovery. The offer discovery algorithm shown in Section 7.3 uses
only information semantics and operation safety annotations (not supported by
other frameworks), and neither of these types of semantics is specific to offer
discovery.

Since one of the main principles behind WSMO-Lite is modularity, it is
likely that some service descriptions will only include those pieces of service
semantics that are necessary to run the automation algorithms for which the
descriptions were created — for example, we envision that Web service deploy-
ments will be likely to start by specifying only the functional classifications of
services. Therefore, adapting different existing SWS automation algorithms and
systems to WSMO-Lite cannot immediately result in complete interoperability
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with diverse sources of semantic service descriptions. To illustrate, an input/out-
put/precondition/effect matching algorithm for discovery cannot process service
descriptions that only specify functional classification of services.

Still, adapting existing SWS algorithms and systems to WSMO-Lite gives
researchers a common ground and a shared vocabulary, making it easier to iden-
tify and work out the differences between various approaches to the same SWS
automation problem (such as discovery). WSMO-Lite has two effects on ter-
minology that have to be accepted in an adapted algorithm: first, WSMO-Lite
takes the SAWSDL point of view building bottom-up on the underlying tech-
nical descriptions, as opposed to top-down from a semantic model; and second,
WSMO-Lite distinguishes the four types of semantics (functional, nonfunctional,
behavioral and information) and it specifies the five RDFS classes to express
them.

9.3 Performance Evaluation

In this section, we attempt to evaluate the languages presented by this thesis
from the angle of performance.

Directly, both SAWSDL and hRESTS/MicroWSMO clearly have negligible
overhead on document size and parsing complexity of service descriptions. Build-
ing on RDFS, the entry-level knowledge modeling standard for the Semantic
Web, WSMO-Lite also does not impose any advanced reasoning requirements;
however, RDFS is only the base line — WSMO-Lite does not restrict SWS al-
gorithms from employing advanced expressivity and reasoning. In summary, the
languages presented in this thesis present no significant overhead to any direct
performance measures.

As an indirect performance evaluation, we can measure the effect of WSMO-
Lite and of the underlying service description annotation languages on the per-
formance of the SWS algorithms adapted to WSMO-Lite, especially when com-
pared to their “native” versions. Here, we perform such evaluation on WSMO-
Lite discovery, as implemented in iServe. First, we compare the performance of
iServe’s statistical and logics-based discovery with the performance of OWLS-
iMatcher [59], a native statistical OWL-S matchmaker, showing good results
across the board, and demonstrating that WSMO-Lite presents no processing
overhead. Second, we test the logics-based discovery of iServe on a set of geog-
raphy services, with results comparable to other state-of-the-art matchmaking
solutions, with surprisingly little annotation effort.

Our discovery evaluation is performed within the framework of the 2009 S3
Contest on Semantic Service Selection,4 which is the reference contest for eval-
uating service matchmakers. The S3 contest is structured in 3 different tracks.
The first two tracks are specific for OWL-S and SAWSDL respectively, whereas
the third track does not impose any formalism — participants are allowed to
use any approach. We present here an evaluation of iServe WSMO-Lite-based
discovery in all the three tracks of the contest.5

Firstly, we compared iServe’s statistical matchmaker directly with its orig-
inal “native” version, the OWLS-iMatcher (a high-scoring participant in the

4http://www-ags.dfki.uni-sb.de/~klusch/s3/
5Our evaluation was performed after the conclusion of the contest, using the publicly

available test collections and results.

http://www-ags.dfki.uni-sb.de/~klusch/s3/
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S3 context, Track 1). The comparison was carried out on the OWL-S test col-
lection,6 which was imported into the form of WSMO-Lite in iServe. Fig-
ure 9.1(a) shows on four similarity strategies that the discovery results are
virtually the same (any local deviations can be explained by differences in the
underlying ordering of services with the same similarity degree). In other words,
the iMatcher similarity matchmaking is not harmed by the translation of the
service descriptions from OWL-S to WSMO-Lite. We have performed the same
comparison with the SAWSDL iMatcher as well (S3 contest, Track 2), with
the same results — treating SAWSDL-TC service descriptions as WSMO-Lite
ones does not harm iMatcher similarity matching either.

Further improvements were brought to the discovery performance by combin-
ing similarity strategies with logics-based matchmaking algorithms. Effectively,
the combination makes iServe a hybrid matchmaker (as discussed in [61]) and
Figure 9.1(b) confirms that the hybrid approach generally performs better than
pure logical or pure statistic approaches. Again, while iServe discovery is im-
plemented over WSMO-Lite, the tests were done on the OWL-S (shown) and
SAWSDL test collections imported into iServe.

The third track of the S3 contest7 uses a subset of the Jena Geography
Dataset (JGD) that consists of 50 Web services, with approximately half of
them being Web APIs. The contestants in this track are free to use any ser-
vice description and matchmaking approaches. The contestants first receive the
services and create their descriptions, and only then they receive the queries,
formulated in plain English, which the contestants express as queries in their
discovery systems. The discovery results are then compared against up-to-now-
secret relevance judgments (assigning relevant services to each query). In our
evaluation, we proceeded exactly along the same steps.

Because of the lack of matchmakers able to deal with Web APIs, the contes-
tants in this track typically use artificially-created “fake” WSDL descriptions to
represent the Web APIs. We carried out the third track of the evaluation using
the HTML documentation of 16 of these Web APIs annotated with hRESTS
and MicroWSMO, in lieu of their fake WSDLs;8 the use of native Web API de-
scriptions (as opposed to the fake WSDLs) makes no difference to the discovery
results over WSMO-Lite.

For matchmaking, we have only used logics-based discovery, combining func-
tional classifications with straightforward input/output matching; the results
indicate that iServe was able to achieve a performance level comparable to
that of the best-in-class Web service matchmakers.

The graph actually indicates that iServe is the best, but due to the low
number of services and the nature of the contest track, the performance is af-
fected significantly by the quality of the hand-crafted service annotations and
discovery queries. Before executing this evaluation, we had expected to perform
worse with our first set of service annotations (which were intentionally created
with minimum effort, in the spirit of lightweight descriptions) and then to refine
the service descriptions and the discovery queries to achieve acceptable per-
formance, measuring any extra refinement effort. However, the initial semantic
descriptions and discovery queries led to the good results shown, hinting that

6http://projects.semwebcentral.org/projects/owls-tc/
7http://fusion.cs.uni-jena.de/professur/jgdeval/
8The annotated service descriptions can be found at http://iserve.kmi.open.ac.uk/

2010/05/s3eval/services/

http://projects.semwebcentral.org/projects/owls-tc/
http://fusion.cs.uni-jena.de/professur/jgdeval/
http://iserve.kmi.open.ac.uk/2010/05/s3eval/services/
http://iserve.kmi.open.ac.uk/2010/05/s3eval/services/


172 Chapter 9. Evaluation

(a) Comparing iMatcher integrated
in iServe, working over OWL-S TC4
imported into WSMO-Lite, with the
original OWLS-iMatcher

(b) Performance of various combina-
tions of iServe discovery over OWL-S
TC4

(c) Comparing iServe to participants
of the third track of the S3 contest,
results macro-averaged for Binary 7
ranking7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Pr
ec

isi
on

Recall

IRS-III
SAWSDL-MX1
SAWSDL-MX2
SAWSDL-iMatcher
Themis-S
iServe Disco

Figure 9.1: Precision/recall graphs of WSMO-Lite discovery evaluated in iServe
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the lightweight service descriptions really require minimal effort with a good
effect. Note that we have not performed a formal comparison of the efforts of
creating service annotations in WSMO-Lite and the other S3 contestants; eval-
uating the effort required to create service descriptions and discovery queries
for various matchmaking mechanisms is an open research topic in this area.9

Our evaluation not only shows that the logics-based discovery algorithms
adapted to WSMO-Lite give competitive results, but it also establishes iServe
as the first system (that we know of) which can transparently deal both with
WS–∗ Web services and with RESTful APIs. It is also the first system that
provides any advanced logics-based discovery capabilities for RESTful APIs at
all. Thanks to WSMO-Lite, iServe is the only single system that can currently
tackle all the three tracks of the S3 contest, whereas for example iMatcher
was present in the context in two separate variants to support OWL-S and
SAWSDL.

In effect, the evaluation shows that the languages proposed by this thesis
support discovery performance comparable to the best existing systems; this
gives us a good level of confidence that WSMO-Lite will work effectively and
efficiently in other Web service automation tasks as well.

9.4 Comparison to the State of the Art

In the following two subsections, we compare WSMO-Lite with selected exist-
ing SWS approaches, namely OWL-S and WSMO, the two most mature and
comprehensive SWS frameworks, and WSDL-S, the lightweight proposal that
spawned SAWSDL.

9.4.1 Comparing WSMO-Lite to WSMO and OWL-S

The main differences between WSMO-Lite and the two major preceding frame-
works lie especially in the scope of the approaches and in their relation to
standards, but there are other notable differences. All of the differences are de-
tailed in the following paragraphs, and summarized in Table 9.1. Where OWL-S
differs from WSMO, WSMO-Lite happens to be closer to OWL-S; therefore we
generally start by comparing WSMO-Lite to WSMO and then add a remark
about OWL-S.

The foremost difference between WSMO-Lite and WSMO is that of scope:
where WSMO is a comprehensive framework that covers all the areas of semantic
descriptions around services (including user goals, ontologies and mediators),
OWL-S and WSMO-Lite have a narrower scope that deals only with service
descriptions. Both OWL-S and WSMO-Lite use RDFS and OWL for ontologies;
and both delegate goals and mediators to the infrastructure.

Further, where WSMO supports detailed description of both the outer and
the inner behavior of services in choreography and orchestration processes, both
OWL-S and WSMO-Lite only describe the outward behavior of services; OWL-
S uses an explicit process model, while WSMO-Lite captures the functionalities

9For example, there is an ongoing (albeit dormant at the time of this writing) SWS Chal-
lenge effort with such evaluation as its goal. Information about the SWS Challenge is available
at http://sws-challenge.org/wiki/index.php/Main_Page

http://sws-challenge.org/wiki/index.php/Main_Page
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of the operations, leaving the choreography process implicit. In this regard, the
scope of WSMO is deeper.

A major difference between WSMO, OWL-S and WSMO-Lite, one which
may be affecting the adoption of these semantic technologies in service-oriented
environments, lies in the relation of the technologies to existing standards.

On the side of the standards for Web services, WSMO-Lite builds directly on
WSDL and SAWSDL, while both WSMO and OWL-S remain independent of
Web service technologies, shielded by a layer called “grounding” that provides
the necessary links to WSDL.

On the side of Semantic Web standards RDF and OWL, both WSMO-Lite
and OWL-S use them directly, while WSMO provides its own ontology language
WSML, with a mapping to the W3C Recommendations. Because until recently
there was no Semantic Web standard for logical expressions, both OWL-S and
WSMO-Lite have relied on third-party specifications, such as SWRL [44] or
WSML [136]. Now that the W3C has standardized the Rule Interchange Format
RIF [102], both OWL-S and WSMO-Lite may adopt this new standard, and
WSMO may specify a mapping to WSML.

In both areas of standardization, WSMO-Lite is positioned close to the for-
mal standards, and as such, it can easier be adopted in environments that al-
ready use the standard technologies.

The WSMO framework comes with a special syntax, described as “abstract”
and “human-readable”, and it also provides two further exchange formats, in
XML and in RDF. The human-readable syntax is especially intended for ad-
vanced users who can author logical statements and service descriptions in a
source form; other users are expected to use authoring tools. In contrast, both
OWL-S and WSMO-Lite use RDF as their only representation format; the lack
of a friendlier syntax may be seen as a disadvantage.

Other notable differences between WSMO-Lite and the two preceding frame-
works lie in support for using functionality classifications, and in support for
RESTful services.

As part of functional and behavioral semantics, WSMO-Lite supports the use
of functionality classifications. WSMO focuses on expressing service func-
tionality and behavior through logical expressions, therefore it has no explicit
support for categorizing service and operation functionalities. In OWL-S, ser-
vice classification used to be supported (only on services, not on operations); in

WSMO OWL-S WSMO-Lite

Scope
breadth broad – 4 top-level areas narrow – only services

depth deeper shallower – no orchestration

Relation to standards
Web services grounding in WSDL directly on SAWSDL

Semantic Web supplements RDF/OWL/RIF use RDF/OWL/RIF

syntax “human-readable”, RDF, XML RDF

Other differences
svc. classification not supported deprecated supported

RESTful services not supported, but grounding possible directly supported

Table 9.1: Summary of comparison of WSMO-Lite and WSMO
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the newest version this support is deprecated and delegated to domain-specific
extensions.

And finally, with the proposed hRESTS/MicroWSMO microformats, WSMO-
Lite supports the semantic description of RESTful services, which are an
increasingly important part of the Web. In contrast, both OWL-S and WSMO
would need a grounding specification for RESTful services, and we know of no
efforts in this direction.

In summary, by keeping a tight scope and a close relation to standards, we
are positioning WSMO-Lite as a common base for convergence and adoption of
SWS technologies. WSMO-Lite’s direct support for RESTful services is a major
advantage over preceding SWS approaches.

9.4.2 Comparing WSMO-Lite to WSDL-S

WSDL-S is a technology that was developed as an extension of WSDL, in or-
der to bring the semantic descriptions closer to the underlying Web services
technologies. Along with a generic modelReference construct that became the
cornerstone of SAWSDL, WSDL-S also defined constructs for operation precon-
ditions and effects and for WSDL interface categorization, neither of which were
carried over into SAWSDL but are present in WSMO-Lite.

To facilitate semantic automation, WSDL-S allows expressing preconditions
and effects on WSDL operations. WSMO-Lite also supports preconditions and
effects, which are treated as functional annotations, supported both on opera-
tions, as part of the behavioral semantics of a service, and on the service itself, as
part of its functional semantics. Describing high-level preconditions and effects
on the service as a whole (supported in WSMO-Lite but not in WSDL-S) is use-
ful for coarse-grained service discovery and composition, without delving into
the details of the service’s operations. In this way, the discovery or composition
process may be able to overlook formal incompatibilities that SWS automation
couldn’t resolve, but which can be overcome through process mediation devised
by a human engineer.

For coarse-grained service discovery, WSDL-S specifies a construct for at-
taching categorization information to WSDL interfaces. WSMO-Lite also sup-
ports categorizations, treating them as functionality classifications, allowed both
on the service (interface) as functional semantics, and on the service’s opera-
tions, where functional categories serve as parts of behavioral semantics of the
service. Where WSDL-S expects the coarse-grained approach of categorizations
to be useful only on the level of whole services, WSMO-Lite can also handle
categories applicable to operations; for instance wsdlx:SafeInteraction is a cate-
gory of operations that are safe for invocation, as defined in the architecture of
the Web, and discussed here especially in Section 6.5.

Effectively, WSMO-Lite embraces all WSDL-S constructs, generalizing their
use as part of the functional and behavioral semantics of Web services.
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Chapter 10

Conclusions and Future
Work

In this final chapter, we present a concise summary of our work on lightweight
semantic Web service automation, and we lay down some plans for future work.

The Semantic Web of data is starting to be taken seriously outside the re-
search community, as demonstrated for instance by the increasing numbers of
data providers in the Linked Data project [13], especially including open govern-
ment data sources.1 However, the vision of the Semantic Web is not limited to
data interoperability; it has also always included processing services, as implied
in [12] and further discussed in [39].

Research on Semantic Web Services strives for automation of using and com-
bining Web services, similarly to how Semantic Web research focuses on using
and combining data. Numerous approaches to semantic Web service automation
have been proposed. However, SWS research has been fragmented and detached
from the lower-level WS–∗ specifications, which are likely some of the reasons
for its limited adoption in industrial settings. The W3C has started consoli-
dation of SWS approaches through standardization, with SAWSDL being the
first step on this way, albeit a small one. SAWSDL directly addresses the issue
of limited adoption by putting semantics close to the accepted standard Web
services description language WSDL. But SAWSDL does not specify any actual
service semantics.

This thesis defines WSMO-Lite, an ontology for service semantics that fits
directly into SAWSDL annotations, covering functional, nonfunctional, behav-
ioral and information semantics of Web services. To demonstrate the viability
of this ontology, we have adapted to WSMO-Lite several SWS automation
algorithms. WSMO-Lite is intentionally lightweight, in order to smoothen the
learning curve for adopters of SWS technologies.

In addition to SAWSDL-based support of WS–∗ services, WSMO-Lite also
supports RESTful services, which have so far been overlooked by SWS re-
search. RESTful services are becoming an increasingly important component
of Web applications. There is no widely accepted machine-oriented description
language for RESTful services, therefore this thesis also proposes two microfor-
mats, hRESTS and MicroWSMO, which mirror WSDL and SAWSDL on top

1See http://data.gov and http://data.gov.uk as examples.
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of human-oriented HTML documentation of RESTful services. With a minimal
semantic service model that is an abstraction of WSDL and hRESTS, RESTful
services can seamlessly be included in semantic processing with WSMO-Lite.
Such seamless integration of RESTful and WS–∗ Web services will especially
gain importance as the popularity of RESTful services increases in enterprise
environments that have traditionally favored WS–∗ technologies.

To summarize the intended impact of WSMO-Lite:

• Before WSMO-Lite, Web service technologies (WSDL, RESTful) and SWS
approaches were quite disconnected, with little adoption of semantics for
services.

• WSMO-Lite brings a unifying approach for semantics of both WS–∗ and
RESTful services. While lightweight, it supports powerful automation al-
gorithms.

• WSMO-Lite simplifies the creation of semantic descriptions of Web ser-
vices, and thus aims to increase the usage of Web services.

• Web service users and developers should benefit most from WSMO-Lite:
the users can employ semantic technologies for dealing with services, and
service developers and providers can easier describe their services and thus
support their clients.

WSMO-Lite was submitted to the W3C for consideration towards standard-
ization, and acknowledged as a Member Submission [27]. The W3C Team Com-
ment on the submission stated that it “is a useful addition to SAWSDL for
annotations of existing services and the combination of both techniques can
certainly be applied to a large number of semantic Web services use cases.”

10.1 Future work

The main task for future work is fostering adoption of SAWSDL and WSMO-
Lite in industrial WS–∗ settings, and adoption of hRESTS and MicroWSMO
in RESTful service-oriented systems.

Adoption is related to standardization, especially in the standards-heavy en-
vironment of service-oriented computing. We plan further efforts for community
standardization of the two RESTful service description microformats; especially
hRESTS, which is independent of semantics and can provide well-understood
benefits of machine-readable interface definitions for application development.
On top of the already-standard SAWSDL and the two microformats, standard-
ization of SWS approaches can continue in the peace-meal fashion taken with
SAWSDL.

Adoption is further linked to the existence (or lack) of domain ontologies —
an enterprise will more likely consider annotating their services with semantics
if there are established ontologies that cover those services. This is a chicken-
and-egg problem, in that ontologies cannot become established before they gain
some adoption, but they are not likely to be adopted if they aren’t perceived as
established. Therefore, there is a need for research efforts that will propose and
evaluate domain ontologies.

Among other tasks for future work are the parts that we have left out of scope
of this thesis: the creation of semantic descriptions, goal modeling, automated
service invocation.
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For creating semantic descriptions of existing services, there is potential for
applications of process and data mining technologies, natural language process-
ing. Similarly, new methodologies for creating services can include steps that
would document the new services with semantic technologies, possibly includ-
ing some model verification.

Goal modeling would become important in integrated semantic execution
environments (SEEs). The algorithms adopted to WSMO-Lite in Chapter 7 all
have requirements on the information in client goals, but we do not attempt to
propose a unified model for client goals that would cover all these requirements.

Our work contains only basic support for semantics-driven automatic invoca-
tion of Web services, through programmatic lifting and lowering transformations
that work on the whole request and response messages. There is certainly space
for declarative approaches to lifting and lowering, especially if the inputs and
outputs are described with fine granularity both on the semantic level and on the
level of on-the-wire messaging. Our coarse-grained approach does not make lift-
ing and lowering transformations reusable — it is uncommon that two services
with similar semantics also share message schemas, therefore the data ground-
ing transformations are specific to their services. Finer-grained and declarative
approaches would increase the potential of reuse, lowering the cost of creating
semantic descriptions that support invocation.

Finally, there is more space for future work on the implementations and tools
around WSMO-Lite. For instance, beyond the implementations described in
Chapter 8, there is only preliminary tooling for service composition, invocation,
and for service description validation.
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[125] Tomas Vitvar, Jacek Kopecký, Jana Viskova, and Dieter Fensel. WSMO-
Lite Annotations for Web Services. In The Semantic Web: Research and
Applications, 5th European Semantic Web Conference, ESWC 2008, pages
674–689, Tenerife, Spain, 2008. Springer.

[126] Tomas Vitvar, Adrian Mocan, Mick Kerrigan, Michal Zaremba, Maciej
Zaremba, Matthew Moran, Emilia Cimpian, Thomas Haselwanter, and
Dieter Fensel. Semantically-enabled service oriented architecture : con-
cepts, technology and application. Service Oriented Computing and Ap-
plications, 2(2), 2007.

[127] Tomas Vitvar, Maciej Zaremba, and Matthew Moran. Dynamic service
discovery through meta-interactions with service providers. In Enrico
Franconi, Michael Kifer, and Wolfgang May, editors, ESWC, volume 4519
of Lecture Notes in Computer Science, LNCS, pages 84–98. Springer, 2007.

[128] Marianne Winslett. Reasoning about actions using a possible models ap-
proach. In Proc. AAAI’88, 1988.

[129] Web Services Agreement Specification (WS-Agreement). Recommenda-
tion, Open Grid Forum, March 2007. Available at http://www.ogf.org/
documents/GFD.107.pdf.

[130] Web Services Architecture. Working group note, W3C, February 2004.
Available at http://www.w3.org/TR/ws-arch.

[131] Web Services Policy 1.5 – Framework. Recommendation, W3C, September
2007. Available at http://www.w3.org/TR/ws-policy/.

[132] Web Services Conversation Language (WSCL) 1.0. W3C Member Sub-
mission, Hewlett-Packard, March 2002. Available at http://www.w3.org/
TR/wscl10/.

[133] Web Services Description Language (WSDL) Version 2.0. Recommenda-
tion, W3C, June 2007. Available at http://www.w3.org/TR/wsdl20/.

[134] Web Services Description Language (WSDL) Version 2.0: Adjuncts. Rec-
ommendation, W3C, June 2007. Available at http://www.w3.org/TR/

wsdl20-adjuncts/.

[135] Web Services Description Language (WSDL) Version 2.0: Primer. Rec-
ommendation, W3C, June 2007. Available at http://www.w3.org/TR/

wsdl20-primer/.

[136] The Web Service Modeling Language WSML. Technical report, WSMO
Working Group, 2008. Available at http://www.wsmo.org/TR/d16/d16.
1/v1.0/.

[137] XForms 1.0 (Third Edition). Recommendation, W3C, October 2007.
Available at http://www.w3.org/TR/xforms/.

[138] Extensible Markup Language (XML) 1.0. Recommendation, W3C, Febru-
ary 2004. Available at http://www.w3.org/TR/REC-xml.

http://www.ogf.org/documents/GFD.107.pdf
http://www.ogf.org/documents/GFD.107.pdf
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20-adjuncts/
http://www.w3.org/TR/wsdl20-adjuncts/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/
http://www.wsmo.org/TR/d16/d16.1/v1.0/
http://www.wsmo.org/TR/d16/d16.1/v1.0/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/REC-xml


192 Bibliography

[139] XML Media Types. RFC 3023, IETF, January 2001. Available at http:

//www.rfc-editor.org/rfc/rfc3023.txt.

[140] XML Schema Part 1: Structures. Recommendation, W3C, October 2004.
Available at http://www.w3.org/TR/xmlschema-1/.

[141] XML Path Language (XPath) Version 1.0. Recommendation, W3C,
November 1999. Available at http://www.w3.org/TR/xpath.

[142] XML Path Language (XPath) 2.0 (Second Edition). Recommendation,
W3C, December 2010. Available at http://www.w3.org/TR/xpath20.

[143] XQuery 1.0: An XML Query Language. Recommendation, W3C, June
2006. Available at http://www.w3.org/TR/xquery.

[144] XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition). Rec-
ommendation, W3C, December 2010. Available at http://www.w3.org/

TR/xpath-datamodel.

[145] XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition).
Recommendation, W3C, December 2010. Available at http://www.w3.

org/TR/xpath-functions.

[146] XSL Transformations. Recommendation, W3C, November 1999. Available
at http://www.w3.org/TR/xslt.

[147] Hong Qing Yu, Neil Benn, Stefan Dietze, Ronald Siebes, Carlos Pedrinaci,
Dong Liu, David Lambert, and John Domingue. Two-staged approach for
semantically annotating and brokering TV-related services. In Proceedings
of the IEEE International Conference on Web Services (ICWS), Miami,
Florida, USA, 2010.

[148] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints. ACM Transactions
on the Web, 1(1), May 2007. Available at http://doi.acm.org/10.1145/
1232722.1232728.

[149] Maciej Zaremba, Tomas Vitvar, Matthew Moran, and Thomas Hasselwan-
ter. WSMX Discovery for SWS Challenge. SWS Challenge Workshop,
Athens, Georgia, USA, November 2006.

http://www.rfc-editor.org/rfc/rfc3023.txt
http://www.rfc-editor.org/rfc/rfc3023.txt
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xpath-datamodel
http://www.w3.org/TR/xpath-datamodel
http://www.w3.org/TR/xpath-functions
http://www.w3.org/TR/xpath-functions
http://www.w3.org/TR/xslt
http://doi.acm.org/10.1145/1232722.1232728
http://doi.acm.org/10.1145/1232722.1232728

	I Problem Statement and Background
	Introduction
	Problem Statement
	Approach and Methodology
	Main Contributions
	Overview of this thesis

	Semantic Web Services
	SWS Automation Tasks and Algorithms
	SWS Description Frameworks
	Open Problems

	Background
	OASIS Reference Model for SOA
	Common Web technologies
	WS–* technologies
	RESTful Web services
	Semantic Web Technologies


	II Semantic Web Service Description Languages
	Lightweight Service Ontology
	Web Service Model
	Requirements for a Service Ontology
	Service Ontology Conceptualization
	The Service Ontology in RDFS
	Using WSML Logical Expressions in Service Capabilities
	Semantic Web Service Description Layering

	Annotating WS–* Services with SAWSDL and WSMO-Lite
	Annotating WSDL with SAWSDL
	Mapping Annotated WSDL to WSMO-Lite Service Model
	Deployment of Ontologies Used in SAWSDL Descriptions
	Validation of WSMO-Lite Descriptions in SAWSDL

	MicroWSMO: Annotating RESTful Web Services
	Model for Semantic Description of RESTful Services
	Describing RESTful Web Services in HTML
	Other Technologies for Describing RESTful Services
	Data Lifting and Lowering
	Semantics Inherent in RESTful Web Services
	Deployment of Semantic Descriptions
	Validation of MicroWSMO/hRESTS Files


	III Evaluation and Conclusions
	Algorithms for Service Discovery and Composition
	Discovery Process in General
	Functional Web Service Matchmaking
	Service Contracting, Offer Discovery
	Nonfunctional Filtering and Ranking
	Final Service/Offer Selection
	Service Composition

	Implementations
	Semantic Execution Environment
	Service Description Parsers
	Service Registry, Discovery API
	Semantic Description Editors

	Evaluation
	Evaluation Methodology
	Fit-for-Purpose Evaluation
	Performance Evaluation
	Comparison to the State of the Art

	Conclusions and Future Work
	Future work

	Bibliography


