WSMO-Lite: Lowering the Semantic Web Services Barrier
with Modular and Light-weight Annotations *

Jacek Kopecky and Tomas Vitvar
Semantic Technology Institute (STI),
University of Innsbruck, Austria,
{firstname.lastname}@sti2.at

Abstract

Services are an increasingly important part of the Web,
and they are a necessary component of the Semantic Web.
Semantic Web Services (SWS) are a research effort to-
wards automation of the use of Web services, enhancing
existing SOA capabilities with intelligent and automated
integration. Recently, we have introduced WSMO-Lite, a
lightweight service ontology intended for semantic anno-
tations of the Web Service Description Language WSDL.
In contrast to preceding SWS frameworks such as OWL-S
and WSMO, WSMO-Lite simplifies the semantic descrip-
tions and enables bottom-up semantic annotation of Web
services, but very importantly, it also relaxes the require-
ments on completeness of semantic descriptions, which en-
ables building incremental layers of semantics on top of ex-
isting service descriptions. In this work, we describe vari-
ous useful subsets of the extent of semantic annotation on
Web services with respect to the requirements of SWS au-
tomation tasks; and we detail the means of validating SWS
descriptions with flexible levels of strictness.

1 Introduction

The Semantic Web is not only an extension of the current
Web with semantic descriptions of data; it also needs to in-
tegrate services that can be used automatically by the com-
puter on behalf of its user [2]. A major technology for pub-
lishing services on the Web is the so-called Web services.
Based on WWW standards HTTP and XML, Web services
are gaining significant adoption in areas of application in-
tegration, wide-scale distributed computing, and business-
to-business cooperation. Still, many tasks commonly per-
formed in service-oriented systems remain manual (per-
formed by a human operator).

*This work is supported by the EU FP7 project SOA4AIL

In order to make Web services part of the Semantic Web,
the research area of Semantic Web Services (SWS) aims
to increase the level of automation around Web services.
Typical tasks automated by SWS technologies are discover-
ing available services and composing them to provide more
complex functionalities. SWS automation is supported by
machine-processable semantic descriptions that capture the
important aspects of the meaning of service operations and
messages.

The main current technologies for semantic descriptions
of Web services, such as WSMO [8] and OWL-S [7],
model services in a top-down fashion. They define complete
frameworks for describing semantics for services while they
assume that a service engineer first models the semantics
(usually as ontologies, functional, non-functional, and be-
havioral descriptions) before grounding them in service in-
vocation and communication technologies (e.g. WSDL and
SOAP). This approach, however, does not fit well with in-
dustrial developments of SOA technology, such as WSDL
and REST, where thousands of services are already avail-
able within and outside enterprises (i.e., on the Web). In
other words, it is hard to use the semantic frameworks in a
bottom-up fashion, that is, for building increments on top
of existing services while at the same time enhancing SOA
capabilities with intelligent and automated integration.

In 2007, the W3C finished its work on Semantic An-
notations for WSDL and XML Schema (SAWSDL, [5]).
The Recommendation defines simple extensions for the
Web Services Description Language WSDL and for XML
Schema; these extensions are used to link WSDL compo-
nents with arbitrary semantic descriptions. It thus provides
the grounds for a bottom-up approach to service modeling,
pioneered by WSDL-S [1]: it supports the idea of adding
small increments (and complexity) on top of WSDL, mak-
ing it possible to cherry-pick results from various exist-
ing approaches. This way, SWS deployments can attain the
80/20 point: get 80% of the feasible automation with only
20% of the effort.

In [9], we defined WSMO-Lite, a lightweight framework

Service Engineer

Client

Domain-Specific

Ontology Capabili Cl ificatis N ional Service Ontology
RDFS, OWL, RIF,
Semantic WSML, ...
Level
WSMO-Lite Service
Ontology Ci Cl ificati Non-functional Ontology
RDFS
modelReference loweringSchemaMapping liftingSchemaMapping ifﬂ\ﬁ/SDL
Non-semantic N ntert. — X WS-* WSDL, Ws-*
Level Schema nterface Operations inding Service FEENS XML
SOAP, HTTP, ..

Figure 1. Semantic service description stack

for SWS annotations, introducing a service ontology pri-
marily intended for use in SAWSDL. The most important
difference between WSMO and WSMO-Lite is in their re-
lation to WSDL: while WSMO hides the WSDL descrip-
tion behind the grounding mechanisms in service choreog-
raphy, WSMO-Lite sees the WSDL description as its basis,
directly annotating the various WSDL components with the
appropriate semantics.

In this present paper, we explore a range of useful sub-
sets of the extent of semantic Web service annotation with
respect to the requirements of SWS automation tasks, and
we detail the means of validating a SWS description against
these subsets, with multiple levels of validation strictness.

The rest of this paper is structured as follows. Sec-
tion 2 talks about the technologies underlying our work:
Web service description technologies and WSMO-Lite. In
Section 3, we discuss the various useful subsets of semantic
Web service description. In Section 4, we show how SWS
descriptions can be validated against the above subsets, and
Section 5 concludes the paper.

2 Semantic Web service description

As depicted in Figure 1 and detailed in [9], there are
two levels in the stack of semantic Web service descrip-
tion languages, namely a semantic and a non-semantic level.
In addition, there are two types of stakeholders in the
stack, namely a service engineer (human being) and a client
(software agent). The service engineer uses Web services
through the client, with particular tasks such as service dis-
covery, selection, mediation, composition and invocation.
Through these tasks the client or service engineer (depend-
ing on the level of automation) decide whether to bind with
the service or not. In order to facilitate such decisions, ser-
vices should describe their capabilities and interfaces in a
machine-processable form.

Web services can be described in terms of the following
general types of service semantics:

o Information Model defines the data model for input,
output and fault messages.

e Functional Descriptions define service functionality,
that is, what a service can offer to its clients when it
is invoked.

e Non-Functional Descriptions define any incidental de-
tails specific to the implementation or running environ-
ment of a service.

e Behavioral Descriptions define external (public chore-
ography) and internal (private workflow) behavior.

At the non-semantic level, the current SOA technology
gives us de-facto and de-jure standards such as WSDL,
SAWSDL, and related WS-* specifications. They all use
XML as a common flexible data exchange format. Services
are described as follows:

o Information Model is represented using XML Schema.

e Functional Description is represented using a WSDL
Interface and its operations.

e Non-Functional Description is represented using var-
ious WS-* specifications, such as WS-Policy, WS-
Reliability, WS-Security, etc., plus any technical de-
tails represented using WSDL Binding for message se-
rializations and underlying communication protocols,
such as SOAP, HTTP; and physical endpoint informa-
tion specified using WSDL Service.

e Behavioral Description can be represented using the
WS-* specifications of WS-BPEL! (for the workflow)

"http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

and WS-CDL? (for the choreography).

SAWSDL is the bridge between the non-semantic layer
and the semantic one; in other words, it is an essential part
of the non-semantic level of the stack, providing the ground
for the semantic layer. SAWSDL allows WSDL compo-
nents to be annotated with semantics, using three extension
attributes:

e modelReference for pointing to concepts that de-
scribe a WSDL component (so-called reference anno-
tations),

e loweringSchemaMapping and 1liftingSchemaMap-—
ping for specifying the mappings between the XML
data and the semantic information model (so-called
transformation annotations).

At the semantic level, as shown in Figure 1, the WSMO-
Lite service ontology describes Web services as follows:

e Information Model is represented using a domain on-
tology.

e Functional Descriptions are represented as capabili-
ties and/or functionality classifications. A capability
defines conditions which must hold in a state before a
client can invoke the service, and effects which hold in
a state after the service invocation. Classifications de-
fine the service functionality using some classification
ontology (i.e., a hierarchy of categories).

e Non-Functional Descriptions are represented using an
ontology, semantically representing some policy or
other non-functional properties.

e Behavioral Descriptions are represented indirectly
through functional annotations of service operations.
See [9] for more details on behavioral descriptions in
WSMO-Lite.

Listing 1 shows the WSMO-Lite service ontology in
RDFS, serialized in Notation 33. Below, we explain the se-
mantics of the WSMO-Lite elements:

e wl:0Ontology (lines 6-7) defines a container for a col-
lection of assertions about the information model of
a service. Same as owl:Ontology, wl:0Ontology al-
lows for meta-data such as comments, version control
and inclusion of other ontologies. wl:0ntology is a
subclass of owl:0Ontology since as we already men-
tioned, it has a special meaning of the ontology used
as the service information model.

2Choreography Description Language, http://www.w3.org/TR/
ws-cdl-10/
3http://www.w3.org/DesignIssues/Notation3.html

1 @prefix rdf: <http:/www.w3.0rg/1999/02/22—rdf —syntax—ns#> .
2 @prefix rdfs: <http://www.w3.0rg/2000/01/rdf —schema#> .
3 @prefix owl: <http://www.w3.0rg/2002/07/owl#> .
4 @prefix wl: <http://www.wsmo.org/ns/wsmo—lite#> .
5

6 wl:Ontology rdf:type rdfs:Class;

7 rdfs:subClassOf owl:Ontology.

8 wl:ClassificationRoot rdfs:subClassOf rdfs:Class.
9 wl:NonFunctionalParameter rdf:type rdfs:Class.
10 wl:Condition rdfs:subClassOf wl:Axiom.

—_

wl:Effect rdfs:subClassOf wl:Axiom.
wl:Axiom rdf:type rdfs:Class.

[

Listing 1. WSMO-Lite Service Ontology

e wl:ClassificationRoot (line 8) marks a class that
is a root of a classification which also includes all
the RDFS subclasses of the root class. A classification
(taxonomy) of service functionalities can be used for
functional description of a service.

e wl:NonFunctionalParameter (line 9) specifies a
placeholder for a concrete domain-specific non-
functional property.

e wl:Condition and wl:Effect (lines 10-12) together
form a capability in functional service description.
They are both subclasses of a general wl:Axiom class
through which a concrete language can be used to de-
scribe the logical expressions for conditions and ef-
fects.

Finally, WSMO-Lite defines five types of semantic
annotations:

Al: Ontology annotations of XML Schema: The schema
used in WSDL to describe messages, i.e., the element decla-
rations and type definitions, can carry reference annotations
linking to the appropriate classes from the service informa-
tion model ontology.

A2: Transformation annotations of XML Schema: To be
able to communicate with a service, the client needs to
transform data between its semantic model and the service-
specific XML message structures. The schema may contain
transformation annotations which specify the appropriate
mappings.

A3: Functional annotations of WSDL Interface and Ser-
vice: Functional descriptions (both capabilities and cate-
gories) apply both to concrete web services and to the
reusable and abstract interfaces. A reference annotation
points from a service or an interface to its appropriate func-
tional description.

Ad4: Functional annotations of WSDL Interface opera-
tions: Functional descriptions (both capabilities and cate-
gories) apply also to interface operations, to indicate their

WSMO-Lite Service Ontology

Transformations
(lifting, lowering)

Capability,
Category

Ontology
element

Uses in in/
out message

Schema element
or type

operations

. contains i

A&7 Interface

Capability, Non-
Category Functional
¥ (1]

A3 A3
Rule3, A5| AS| As

Rule 4

Implements

or extends
Service, Service, Endpoint,
Interface Binding

Figure 2. lllustration of Annotations and Rules

particular functionalities. A reference annotation points
from an operation to its appropriate functional description.
AS5: Non-functional annotations of WSDL Service, End-
points, and Binding: Non-functional descriptions apply to
a concrete instance of a Web service, that is, a Service, its
Endpoints, or its Binding. A reference annotation can point
from any of these components to a non-functional property.
Figure 2 shows these annotations along with the associ-
ated validation rules, explained in the following sections.

3 Useful subsets of semantic descriptions

Top-down semantic Web service frameworks such as
OWL-S and WSMO are built with the vision of complete
automation. They provide fully-fledged models of service
semantics, but they also marginalize WSDL, which would
really become unimportant if all Web service use was auto-
mated. However, practice shows that complete automation
is unattainable, and that WSDL, a technology well known
to Web service engineers, needs to be central to any SWS
framework that wants to succeed in the industry. The W3C
standard SAWSDL is meant to support exactly such frame-
works.

Apart from the centrality of WSDL, it is also important
that SWS frameworks shouldn’t require complete seman-
tic descriptions of all the aspects of the available services;
the semantic automation should be available in a piecemeal
fashion.

WSMO-Lite succeeds on both accounts. It is built on top
of SAWSDL, and it is modular, as we show in this section.

Table 1 provides a summary of how the various annota-
tions of WSMO-Lite fit with the tasks common in service-
oriented systems and amenable to automation. The sym-
bol e marks the annotations required to automate a given
task, and the symbol o marks annotations that are helpful
but not absolutely required.

e Service Discovery aims to find services that may ful-
fill a given client goal. Service discovery mainly op-
erates on functional descriptions (capabilities or cate-
gories), provided by annotations A3. A concrete dis-
covery mechanism may check that the goal complies
with the service’s conditions, and that the service ef-
fects fit the goal. With classification, the goal specifies
aneed for services in a given category, so the discovery
mechanism simply checks category (and subcategory)
membership. Further, in certain settings (e.g. for data
services), the suitability of a service to a given goal
may be determined by its inputs and outputs, therefore
annotations Al are optional for this task.

e Operation Discovery is similar to service discovery,
but it works on the granularity of individual service
operations. Therefore, it requires annotations A4, and
again, optionally it can use annotations A 1. Operation
discovery might be useful with interfaces that are col-
lections of standalone, independent operations.

e Offer Discovery interacts with any discovered services
to find out any concrete offers that are appropriate to
the user’s goal; this is an important step e.g. in e-
commerce (cf. [4]). Offer discovery needs to interact

| Service Task [A1 A2 [A3 [A4] A5 |

Service Discovery
Operation Discovery
Ofter Discovery
Composition

Ranking and Selection
Operation Invocation
Service Invocation
Data Mediation
Process Mediation

O|le|e®@|O|O
L]
oO|le|e| e

Table 1. Service tasks and annotations

with any information-providing operations of the ser-
vice (as determined by annotations A4), and for com-
munication it requires annotations Al and A2, as ex-
plained below under Operation and Service Invocation.

e Composition puts together multiple services in order
to accomplish a task that no single available service
can fulfill by itself. It uses capability descriptions, i.e.,
annotations A3 and A4 restricted to capabilities, along
with input and output descriptions, provided by anno-
tations A1, to put together a suitable execution plan.

e Ranking and Selection mainly processes non-
functional descriptions, i.e., annotations A5, to select
the service that most suits some particular require-
ments; however, other annotations (Al, A3, A4) can
also be taken into account in comparing the relative
suitability of different services.

e Operation Invocation is the invocation of a single oper-
ation, and it requires data transformations between the
semantic model on the client and the service’s XML
message structure, provided by annotations A2.

e Service Invocation invokes the appropriate operations
of the service, in a proper order. This task therefore
uses the implicit interface choreography (cf. [9]) which
is produced from annotations A4 and Al. On top of
that, annotations A2 are required because service invo-
cation involves operation invocation, described above.

e Data Mediation automates the mapping between het-
erogeneous data. This process uses data annotations
(Al and A2): assuming two different schemas corre-
spond to a single shared ontology, the Al annotations
make it possible to discover such a correspondence,
and the A2 annotations then enable the transformations
of instance data: lifting from one schema and lowering
to the other.

e Process Mediation is applied during conversation be-
tween two services mediating their choreographies and
messages (cf. [3]). It combines data mediation and
choreography processing and thus requires annotations
Al, A2 and A4.

The different possible combinations of the annotations
required for the various tasks demonstrate the modularity of
WSMO-Lite. In the following section, we discuss the vali-
dation of WSMO-Lite descriptions.

4 Validating WSMO-Lite descriptions

As with any kind of formal, machine-processable de-
scriptions, a validator is a very useful tool when developing

semantic descriptions of Web services. Validation is a way
of catching certain errors early in the development process.
We distinguish four facets of validity (as a general term) of
WSMO-Lite descriptions:

1. A correct description is such that truthfully models
its underlying service. This is generally verified by
“adding eyeballs”. Apart from detecting inconsisten-
cies (below), we do not attempt to specify an automatic
correctness validator. A correct description enables au-
tomation, but even a correct description does not guar-
antee success in using the service, as we cannot elim-
inate run-time failures such as a product being out of
stock, and even errors such as a network outage.

2. A complete description describes all the relevant as-
pects of the semantics of the service. Incompleteness is
not necessarily a problem: for example, an order can-
cellation operation would not be needed for the goal of
making an order, therefore even if the operation lacks
data transformation annotations (A2), the invocation
of the service, which technically requires these anno-
tations, would still succeed (barring incorrectness or
run-time errors). Therefore, an automatic validator en-
countering incompleteness may report a warning that
the user should consider. Some cases of incomplete-
ness may be acceptable to the user.

3. A consistent description does not contradict itself. An
inconsistent description is clearly incorrect. If a valida-
tor encounters inconsistency, it must report an error
that the user should fix. Even though the inconsistency
might also not actually come into play in particular
scenarios (e.g. if only the operation for order cancella-
tion was annotated inconsistently), it should never be
considered acceptable.

4. A syntactically valid description is captured using
valid sentences of the underlying languages. This can
be checked automatically by many existing tools;
WSMO-Lite does not actually introduce any new
syntax on top of existing standards. Nevertheless, a
WSMO-Lite validator may include syntax validators,
and then it must report an error on any syntactically
invalid input documents.

Apart from the WSMO-Lite description, a validator tool
also needs to consider the set of tasks for which the de-
scription is intended. This influences especially the com-
pleteness requirements; a description complete for service
discovery need not be complete for service invocation. In
fact, the consistency requirement mirrors the requirements
for annotations — a task that requires some annotation (as
shown in Table 1) also requires this annotation to be present
on all the WSDL components on which it applies (with an

exception noted below); otherwise, the WSDL components
might be inaccessible to the SWS automation processes.

The following is a list of consistency validation rules that
can be checked on WSMO-Lite descriptions:

Consistency Rule I Every functionality (A3 annotation, a
capability or a category) of a service must be a restriction of
some functionality of the service’s interface. (See [9] for the
formal definitions of capability and category restriction.)

A concrete functional description attached to a service
refines the functional description of the service’s interface.
For instance, the WSDL interface may be a general e-
commerce interface, and a service may restrict it to only cer-
tain categories of products, e.g. music CDs. This allows dis-
covery to first find suitable interfaces and then only check
services that implement these interfaces. This is useful as
an optimization for Service Discovery and Composition.

Consistency Rule 2 Similarly, every functionality of an in-
terface must be a restriction of some functionality of any
interface that extends it.*

This rule ensures that functionality cannot be lost
through WSDL interface extension; discovery need not
check the suitability of an interface that extends another
interface already discovered as suitable. Similarly to the
rule above, this one is useful as an optimization for Service
Discovery and Composition.

The following are proposed consistency rules, but we do
not have feasible algorithms for verifying them yet.

Consistency Rule 3 (not implemented) If an XML schema
component has both a data annotation (A1) and a lifting an-
notation (A2), the lifting transformation must accept data
valid according to the schema component, and produce in-
stances valid according to the ontology element specified
by the data annotation. Similarly, if an XML schema com-
ponent has both a data annotation (A1) and a lowering an-
notation (A2), the lowering transformation must accept in-
stances data valid according to the ontology element spec-
ified by the data annotation, and produce an XML element
valid according to the schema component.

For illustration; a message may be described as being
a Purchase Order. If it has a lifting annotation, the lift-
ing transformation must accept an XML document that is
valid according to the message schema, and the result of the
transformation must contain an instance of Purchase Order;
and if the message has a lowering annotation, the lowering
transformation must take an instance of Purchase Order as

4WSDL 2.0 allows interface extension.

its input and return an XML document that is valid accord-
ing to the message schema.

There cannot be a general algorithm which checks
this rule for powerful Turing-complete transformation lan-
guages such as XSLT, however there might be useful val-
idators for some common cases, or for less powerful trans-
formation languages.

Consistency Rule 4 (not implemented) The interface chore-
ography produced from operation data annotations (A1) and
functional annotations (A4) allows at least one successful
execution coming from a state that fulfills the interface ca-
pability (A3) condition and ending in a state that fulfills the
capability effect.

Consistency Rule 5 (not implemented) For every state that
fulfills the interface capability (A3) condition, the inter-
face choreography produced from operation data annota-
tions (A1) and functional annotations (A4) allows at least
one successful execution ending in a state that fulfills the
capability effect.

These two rules both check the consistency of the in-
terface functional annotations with the operation functional
annotations (checking that the operations can deliver what
the interface promises), with Rule 4 being a weaker variant
of Rule 5. For instance, if the service functional description
says the service can sell and deliver products, but there is no
actual operation that allows for the client to specify delivery
options, Rule 5 would be violated because delivery cannot
be accomplished, but the service would comply with Rule 4
because if delivery is not necessary (for instance when pur-
chasing music in a digital format, such as MP3), the service
could be used successfully.

It is not clear to us yet whether either of these two rules
can automatically be verified.

To summarize, a WSMO-Lite validator takes a semantic
Web service description and a list of SWS tasks that the
description should support, and returns a listing of errors
and warnings, if any, according to these steps:

1. First, syntactical validity of the input description
should be checked; in case of any errors, they are re-
ported and the process stops.

2. If the list of intended SWS tasks contains Service
Discovery or Composition, the input description is
checked against the two consistency rules; if the con-
sistency check fails, it is reported as an error.

3. The input description is checked for completeness of
annotations required by the intended SWS tasks, any
violations are reported as warnings.

The completeness requirements are in direct opposition
to the requirements of “light-weight” and “incremental” an-
notation. This is why we suggest a validator to issue only
warnings when validating incomplete descriptions; quite of-
ten “a little semantics can go a long way.”

5 Conclusions and Future Work

In this paper, we have described the latest results from
the development of WSMO-Lite, a lightweight ontology
for Semantic Web Services, building on the newest W3C
standards. WSMO-Lite fills in SAWSDL annotations with
concrete semantic constructs, yet still stays open with re-
spect to concrete ontology languages and the corresponding
expressivity and complexity trade-offs. WSMO-Lite sup-
ports piecemeal and incremental annotation of existing Web
services, which makes it much easier to adopt than larger
frameworks, such as WSMO and OWL-S.

Prof. Amit Sheth, one of the main initiators of the
SAWSDL work in W3C, points out in [6]: “Rather than
look for a clear winner among various SWS approaches,
I believe that in the post-SAWSDL context, significant con-
tributions by each of the major approaches will likely in-
fluence how we incrementally enhance SAWSDL. Incre-
mentally adding features (and hence complexity) when it
makes sense, by borrowing from approaches offered by var-
ious researchers, will raise the chance that SAWSDL can
present itself as the primary option for using semantics for
real-world and industry-strength challenges involving Web
services.” WSMO-Lite adheres to the principles underlying
Sheth’s statement.

In our future work, we plan to extend WSMO-Lite to-
wards semantic annotations for RESTful Web services,
in order to embrace the booming ecosystem of Web 2.0
services and mash-ups; and we also expect to integrate
WSMO-Lite alongside the larger WSMO framework in
the system WSMX (Web Services Execution Environ-
ment, [3]).

References

[1] R. Akkiraju, ef al. Web Service Semantics - WSDL-
S, available at http://Isdis.cs.uga.edu/projects/meteor-
s/wsdl-s/. Tech. rep., LSDIS Lab, 2005.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Seman-
tic Web. Scientific American, 284(5):34-43, 2001.

[3] T. Haselwanter, et al. WSMX: A Semantic Service Ori-
ented Middleware for B2B Integration. In /CSOC, pp.
477-483. 2006.

[4] J. Kopecky, E. Simperl, and D. Fensel. Semantic Web
Service Offer Discovery. In Proceedings of Service

Matchmaking and Resource Retrieval in the Semantic
Web Workshop, colocated with 6™ ISWC. 2007.

[5] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell.
SAWSDL: Semantic Annotations for WSDL and XML
Schema. IEEE Internet Computing, 11(6):60-67, 2007.

[6] D. Martin and J. Domingue. Semantic web services:
Past, present and possible futures (systems trends and
controversies). IEEE Intelligent Systems, 22(6), 2007.

[7] D. Martin et al. OWL-S: Semantic Markup for Web
Services. Member submission, W3C, 2004. Available
from: http://www.w3.0org/Submission/OWL-S/.

[8] D. Roman, e al. Web Service Modeling Ontology. Ap-
plied Ontology, 1(1):77-106, 2005.

[9] T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel.
WSMO-Lite Annotations for Web Services. In Pro-
ceedings of the 5th European Semantic Web Conference
(ESWC). 2008.

