
WSMO-Lite Annotations for Web Services?

Tomas Vitvar1, Jacek Kopecký2, Jana Viskova3, and Dieter Fensel2

1 Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway
{firstname.lastname}@deri.org

2 Semantic Technology Institute (STI),
University of Innsbruck, Austria,

{firstname.lastname}@uibk.ac.at
3 Department of Information Networks,

University of Zilina, Slovakia,
viskova@kis.fri.utc.sk

Abstract Current efforts in Semantic Web Services do not sufficiently address
the industrial developments of SOA technology in regards to bottom-up model-
ing of services, that is, building incremental layers on top of existing service de-
scriptions. An important step in this direction has been made in the W3C by the
SAWSDL WG proposing a framework for annotating WSDL services with arbi-
trary semantic descriptions. We build on the SAWSDL layer and define WSMO-
Lite service ontology, narrowing down the use of SAWSDL as an annotation
mechanism for WSMO-Lite. Ultimately, our goal is to allow incremental steps
on top of existing service descriptions, enhancing existing SOA capabilities with
intelligent and automated integration.

1 Introduction

Current efforts in enhancing Web service technology with semantics, such as WSMO
and OWL-S, adopt the top-down approach to modeling of services. They define com-
plete frameworks for describing semantics for services while they assume that a service
engineer first models the semantics (usually as ontologies, functional, non-functional,
and behavioral descriptions) before grounding them in service invocation and com-
munication technologies (e.g. WSDL and SOAP). This approach, however, does not
fit well with industrial developments of SOA technology, such as WSDL and REST,
where thousands of services are already available within and outside enterprises (i.e.,
on the Web). In other words, it is hard to use the semantic frameworks in a bottom-up
fashion, that is, for building increments on top of existing services while at the same
time enhancing SOA capabilities with intelligent and automated integration.

In 2007, the W3C finished its work on Semantic Annotations for WSDL and XML
Schema (SAWSDL)1. SAWSDL defines simple extensions for WSDL and XML Schema
used to link WSDL components with arbitrary semantic descriptions. It thus provides
the grounds for a bottom-up approach to service modeling: it supports the idea of adding

? This work is supported by the SFI Grant No. SFI/02/CE1/I131, and the EU project Knowledge Web (FP6–507482).
1 http://www.w3.org/TR/sawsdl/



small increments (and complexity) on top of WSDL, allowing to adopt results from
various existing approaches. As the basis for bottom-up modeling, SAWSDL is inde-
pendent of any particular semantic technology, i.e., it does not define any types, forms
or languages for semantic descriptions.

In this paper we describe the WSMO-lite service ontology, created as a recent result
of the community effort in the WSMO WG2. WSMO-Lite is the next evolutionary
step after SAWSDL, filling the SAWSDL annotations with concrete semantic service
descriptions and thus embodying the semantic layer of the Semantic Service Stack.
With the ultimatate goal to support realistic real-world challenges in intelligent service
integration, WSMO-Lite addresses the following requirements:

– Identify the types and a simple vocabulary for semantic descriptions of services (a
service ontology) as well as languages used to define these descriptions;

– Define an annotation mechanism for WSDL using this service ontology;
– Provide the bridge between WSDL, SAWSDL and (existing) domain-specific on-

tologies such as classification schemas, domain ontology models, etc.

The rest of this paper is structured as follows. In Section 2, we introduce the Seman-
tic Service Stack along with the state-of-the-art technologies for services and Semantic
Web languages used in the stack. In Section 3, we describe the WSMO-Lite Service
Ontology and summarize the resolution of the major points from its development. In
Section 4, we describe the WSMO-Lite semantic annotations for WSDL, and in Sec-
tion 5 we describe some relevant aspects for WSMO-Lite applications.

2 Semantic Service Stack

As depicted in Figure 1, there are two levels in the Semantic Service Stack, namely
semantic and non-semantic level. In addition, there are two types of stakeholders in
the stack, namely a service engineer (human being) and a client (software agent). The
service engineer uses Web services through the client, with particular tasks such as ser-
vice discovery, selection, mediation, composition and invocation. Through these tasks
the client or service engineer (depending on the level of automation) decide whether
to bind with the service or not. In order to faciliate such decisions, services should de-
scribe their offers using so called service contracts. The Semantic Service Stack adopts
the following general types of service contracts:

– Information Model defines the data model for input, output and fault messages.
– Functional Descriptions define service functionality, that is, what a service can

offer to its clients when it is invoked.
– Non-Functional Descriptions define any incidental details specific to the imple-

mentation or running environment of a service.
– Behavioral Descriptions define external (public choreography) and internal (private

workflow) behavior.
– Technical Descriptions define messaging details, such as message serializations,

communication protocols, and physical service access points.

2 http://www.wsmo.org



Schema Interface Operations Binding Service

Ontology Capability Classification Non-functional

modelReference loweringSchemaMapping

Ontology Capability Classification Non-functional

Messaging, Communication, ...

Non-semantic 
Level

Semantic 
Level

Domain-Specific 
Service Ontology 
RDFS, OWL, RIF, 
WSML, ...

WSMO-Lite Service 
Ontology
RDFS

SAWSDL
XML

WSDL, WS-*
XML

SOAP, HTTP, ...

Service Engineer Client

WS-*
elements

liftingSchemaMapping

Figure 1. Semantic Service Stack

In the following sections, we show how the Semantic Service Stack represents the above
general description types for service contracts at the two different levels.

2.1 Non-Semantic Level

In regard to SOA technology developments today, the Semantic Service Stack repre-
sents service contracts at the non-semantic level using the existing de-facto and de-jure
standards: WSDL, SAWSDL, and related WS-* specifications. They all use XML as a
common flexible data exchange format. Service contracts are represented as follows:

– Information Model is represented using XML Schema.
– Functional Description is represented using a WSDL Interface and its operations.
– Non-Functional Description is represented using various WS-* specifications, such

as WS-Policy, WS-Reliability, WS-Security, etc.
– Behavioral Description is represented using the WS-* specifications of WS-BPEL3

(for the workflow) and WS-CDL4 (for the choreography).
– Technical Description is represented using WSDL Binding for message serializa-

tions and underlying communication protocols, such as SOAP, HTTP; and using
WSDL Service for physical endpoint information.

In addition, while SAWSDL does not fall into any of the service contract descriptions,
it is an essential part of the non-semantic level of the stack, providing the ground for
the semantic layer. SAWSDL defines a simple extension layer that allows WSDL com-
ponents to be annotated with semantics, using three extension attributes:

– modelReference for pointing to concepts that describe a WSDL component,
– loweringSchemaMapping and liftingSchemaMapping for specifying the mappings

between the XML data and the semantic information model.
3 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
4 Choreography Description Language, http://www.w3.org/TR/ws-cdl-10/



2.2 Semantic Level

The Semantic Service Stack represents service contracts at the semantic level using the
WSMO-Lite service ontology as follows (see Section 3 for a detailed description of
WSMO-Lite):

– Information Model is represented using a domain ontology.
– Functional Descriptions are represented as capabilities and/or functionality classi-

fications. A capability defines conditions which must hold in a state before a client
can invoke the service, and effects which hold in a state after the service invocation.
Classifications define the service functionality using some classification ontology
(i.e., a hierarchy of categories).

– Non-Functional Descriptions are represented using an ontology, semantically rep-
resenting some policy or other non-functional properties.

– Behavioral Descriptions are not represented explicitly in WSMO-Lite. In Section
5.1 we show how the public part of the behavioral description of a Web service may
be derived from the functional descriptions of its operations.

– Technical Descriptions are not represented semantically in the service ontology, as
they are sufficiently covered by the non-semantic description in WSDL.

In order to create or reuse domain-specific service ontologies on top of the Semantic
Service Stack, a service engineer can use any W3C-compliant language with an RDF
syntax. This preserves the choice of language expressivity according to domain-specific
requirements. Such languages may include RDF Schema (RDFS), Web Ontology Lan-
guage (OWL) [5], Rule Interchange Format (RIF)5 or Web Service Modeling Language
(WSML)6 [10].

3 WSMO-Lite Service Ontology

Listing 1 shows the WSMO-Lite service ontology in RDFS, serialized in Notation 37.
Below, we explain the semantics of the WSMO-Lite elements:

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
5

6 wl:Ontology rdf:type rdfs:Class;
7 rdfs:subClassOf owl:Ontology.
8 wl:ClassificationRoot rdfs:subClassOf rdfs:Class.
9 wl:NonFunctionalParameter rdf:type rdfs:Class.

10 wl:Condition rdfs:subClassOf wl:Axiom.
11 wl:Effect rdfs:subClassOf wl:Axiom.
12 wl:Axiom rdf:type rdfs:Class.

Listing 1. WSMO-Lite Service Ontology

5 http://www.w3.org/2005/rules/
6 For details on compliance of WSML with W3C languages see [3].
7 http://www.w3.org/DesignIssues/Notation3.html



– wl:Ontology (lines 6–7) defines a container for a collection of assertions about the
information model of a service. Same as owl:Ontology, wl:Ontology allows for
meta-data such as comments, version control and inclusion of other ontologies.
wl:Ontology is a subclass of owl:Ontology since as we already mentioned, it has a
special meaning of the ontology used as the service information model.

– wl:ClassificationRoot (line 8) marks a class that is a root of a classification which
also includes all the RDFS subclasses of the root class. A classification (taxonomy)
of service functionalities can be used for functional description of a service.

– wl:NonFunctionalParameter (line 9) specifies a placeholder for a concrete domain-
specific non-functional property.

– wl:Condition and wl:Effect (lines 10–12) together form a capability in functional
service description. They are both subclasses of a general wl:Axiom class through
which a concrete language can be used to describe the logical expressions for con-
ditions and effects. We illustrate this on an example in Listing 2 (lines 26–42).

Below, we describe the resolutions of major points that came up while WSMO-Lite was
under development in the WSMO WG:

1. Relation of WSMO-Lite to WSMO. WSMO-Lite has been created due to a need for
lightweight service ontology which would directly build on the newest W3C standards
and allow bottom-up modeling of services. On the other hand, WSMO is an established
framework for Semantic Web Services representing a top-down model identifying se-
mantics useful in a semantics-first environment. WSMO-Lite adopts the WSMO model
and makes its semantics lighter in the following major aspects:

– WSMO defines formal user goals and mediators, while WSMO-Lite treats medi-
ators as infrastructure elements, and specifications for user goals as dependent on
the particular discovery mechanism used. They both can be adopted in the running
environment in combination with WSMO-Lite.

– WSMO-Lite only defines semantics for the information model, functional and non-
functional descriptions (as WSMO Service does) and only implicit behavior se-
mantics (see below). If needed, an application can extend WSMO-Lite with its own
explicit behavioral descriptions, or it can adopt other existing technologies.

– While WSMO uses the WSML language for describing domain-specific semantic
models, WSMO-Lite allows the use of any ontology language with an RDF syntax
(see Section 2.2 for more details).

2. WSMO-Lite does not define explicit behavioral descriptions. WSMO-Lite treats Web
services as atomic, and it does not deal with the internals of services. For this reason,
it contains no construct for describing a private behavior (internal workflow) nor does
it deal with annotations of existing WS-BPEL processes. Semantic annotation of pro-
cesses is an independent research effort led by the business process community8 and
its use in combination with WSMO-Lite services is an open research question. Nev-
ertheless, WSMO-Lite allows to derive some behavioral descriptions from functional
(capability) annotations of services. See Section 5.1 for more details.

8 More details on this issue can be found for instance at http://www.ip-super.org



3. Dependency of WSMO-Lite on SAWSDL. As we already mentioned, WSMO-Lite has
been created to address the need for a concrete service ontology as the next evolutionary
step after SAWSDL. For this reason it might seem that WSMO-Lite is also SAWSDL-
dependent. However, WSMO-Lite uses SAWSDL only as an annotation mechanism for
WSDL (see Section 4) while the WSMO-Lite service ontology can be used with any
machine-readable service descriptions in combination with an appropriate annotation
mechanism.

4. WSMO-Lite annotations for RESTful services. In this paper we define how WSMO-
Lite can be used on top of WSDL and SAWSDL. RESTful services (i.e., resource-
oriented services using plain HTTP as the communication protocol) can also be de-
scribed in WSDL, which has support for describing Web services that do not use SOAP
as the communication protocol. Such descriptions can also be annotated using WSMO-
Lite. On the other hand, there are efforts in defining an annotation mechanism for REST-
ful services without WSDL, such as SA-REST [11]. This work is complementary to
WSMO-Lite and we expect to integrate it in the W3C SWS-Testbed XG9.

5. Concrete semantics for conditions and effects. To work with conditions and effects,
it is necessary to define the environment in which these axioms are evaluated. Such
an environment depends on the particular logical language in which the axioms are
expressed. WSMO-Lite does not prescribe any concrete language for functional service
semantics, and therefore it cannot define semantics for confitions and effects as they are
language-dependent.

4 WSMO-Lite Annotations for WSDL

Section 2.2 mentions briefly how the WSMO-Lite ontology is used for the semantic
descriptions. In this section, we formally define the particular types of annotations sup-
ported by WSMO-Lite.

4.1 Definitions

Ontology The fundamental building block for all types of semantic descriptions offered
by WSMO-Lite is the ontology. We use a general definition of the ontology

Ω = (C,R,E, I) (1)

where the sets C,R,E, I in turn denote classes (unary predicates), relations (binary and
higher-arity predicates10), explicit instances (extensional definition), and axioms (in-
tensional definition) which describe how new instances are inferred.

A particular axiom common in I is the subclass relationship: if c1 is subclass of c2
(written as c1 ⊂ c2), every instance of c1 is also an instance of c2. We call this axiom
out because it is necessary for Definition 2 below.

9 http://www.w3.org/2005/Incubator/swsc/
10 Note that a minimal definition would combine the sets of classes and relations as a set of

predicates, but we choose to split them, due to familiarity and also reuse in further definitions.



We distinguish several sub-types of ontologies: we denote an information model
ontology as OI ≡Ω; a functionality classification ontology with root r ∈C as OF(r)≡
Ω; and an ontology for non-functional descriptions as ON ≡Ω.

Capability Functional description of a service as a capability is defined here as

K = (Σ,φpre,φeff ), (2)

where Σ ⊆ ({x}∪C∪R∪E) is the signature of symbols, i.e., identifiers of elements
from C,R,E of some ontology OI complemented with variable names {x}; φpre is a
condition which must hold in a state before the service can be invoked, and φeff is the
effect, a condition which must hold in a state after the successful invocation. Conditions
and effects are defined as statements in logic L(Σ).

In Definition 1 below, we specify a restriction relationship (partial ordering ≤) be-
tween capabilities, and in Definition 2 we define an analogous relationship between
categories in a functionality classification. Practically, if a capability/category K1 is a
restriction of another capability/category K2, any discovery algorithm that discovers K1
as a suitable capability/category for some goal would also discover K2 as such.

Definition 1 (capability restriction) A capability K1 = (Σ,φ
pre
1 ,φ

eff
1 ) is a restriction of

K2 = (Σ,φ
pre
2 ,φ

eff
2 ) (written as K1≤K2) if the condition φ

pre
1 only holds in states (denoted

as s) where also φ
pre
2 holds, and if the same is true for the effects:

K1 ≤ K2 ⇐⇒ ∀s : (holds(φpre
1 ,s)⇒ holds(φpre

2 ,s))∧

(holds(φeff
1 ,s)⇒ holds(φeff

2 ,s)) (3)

Definition 2 (category restriction) For two functionality categories K1 and K2 from clas-
sification OF(r), K1 is a restriction of K2 (written as K1 ≤ K2) if K1 ⊂ K2:

K1 ≤ K2 ⇐⇒ K1 ⊂ K2 (4)

WSDL We denote an XML Schema in WSDL as S, a WSDL interface as I and a service
as W . Further, we denote {x}S as the set of all element declarations and type definitions
of S, and {op}I as the set of all operations of I. Each operation op ∈ {op}I may have
one input message element m ∈ {x}S and one output message element n ∈ {x}S and a
corresponding MEP11 denoted here as op.mep.

Annotations According to SAWSDL, we distinguish two types of annotations, namely
reference annotations and transformation annotations. A reference annotation points
from a WSDL component to a semantic concept. This is denoted as the binary relation
ref (x,s) where x ∈ ({x}S ∪ {I} ∪ {op}I) — any WSDL or Schema component; s ∈
(C ∪ R∪ E ∪ {K}) — an ontology element or a capability. SAWSDL represents ref
using modelReference extension attribute on the WSDL or XML Schema component).

A transformation annotation specifies a data transformation called lifting from a
component of schema S to an element of ontology OI ; and a reverse transformation

11 Message Exchange Pattern, http://www.w3.org/TR/wsdl20-adjuncts/#meps



A1

Transformations 
(lifting, lowering)

A2A2

Rule 1

Ontology 
element

operations

A3 A3
Rule 3, 
Rule 4

A4 A4 A4

Schema element 
or type

Interface Service,
Interface

Capability,
Category

Capability,
Category

Service, Endpoint, 
Binding

A5

Non-
Functional

A5A5
Rule 5

WSMO-Lite Service Ontology

WSDL
contains Implements 

or extends
Uses in in/

out message

Rule 2

Figure 2. Illustration of Annotations and Rules

(from ontology to XML) called lowering. We denote these annotations as the binary
relations lower(m, f (c1)) and lift(n,g(n)), where m,n ∈ {x}S. The function f (c1) = m,
where c1 ∈ (C∪R), is a lowering function transforming data described semantically
by c1 to the XML message described by schema m (SAWSDL represents this annota-
tion using loweringSchemaMapping extension attribute on m). Analogously, function
g(n) = c2, where c2 ∈ (C∪R), is a lifting function transforming XML data from the
message n to semantic data described by c2 (SAWSDL represents this annotation using
liftingSchemaMapping extension attribute on n).

4.2 Annotations and Rules

Figure 2 illustrates a set of annotations (marked A1. . . A5) and their associated rules
(marked Rule 1. . . Rule 5). The rules have been refined from [13] to conform to the
latest WSMO-Lite service ontology specification. The purpose of the rules is to ensure
that the annotations are:

– complete, that is, no gaps are left in the semantic annotations, so that the client can
see all the parts of the service description; for instance, all the operations should be
semantically annotated so that they are reachable to automatic discovery.

– consistent, that is, no related annotations are contradictory; for instance the schema
annotations by model reference need to point to concepts that are the outputs of the
lifting schema mapping transformation, or inputs of the lowering one.

Listing 2 shows an example ontology we use to illustrate annotations. It defines a sim-
ple ontology for a telecommunication service (lines 9–24); the capability for a concrete
Video on Demand subscription service (lines 26–39) (the condition says that the cus-
tomer must have a network connection with some minimal bandwidth, the effect says
that the customer is subscribed to the service); a non-functional property describing
the pricing (lines 44–48); and a simple functionality classification (lines 50–53). We
also define the wsml:AxiomLiteral data type (line 42) for WSML-Rule axioms so that a
client can correctly process them according to the WSML specification.



1 // namespaces and prefixes
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
5 @prefix ex: <http://example.org/onto#> .
6 @prefix xs: <http://www.w3.org/2001/XMLSchema#> .
7 @prefix wsml: <http://www.wsmo.org/wsml/wsml−syntax#> .
8

9 // ontology example
10 <> rdf:type wl:Ontology.
11

12 ex:Customer rdf:type rdfs:Class .
13 ex:hasService rdf:type rdf:Property ;
14 rdfs:domain ex:Customer ;
15 rdfs:range ex:Service .
16 ex:Service rdf:type rdfs:Class .
17 ex:hasConnection rdf:type rdf:Property ;
18 rdfs:domain ex:Customer ;
19 rdfs:range ex:NetworkConnection .
20 ex:NetworkConnection rdf:type rdfs:Class .
21 ex:providesBandwidth rdf:type rdf:Property ;
22 rdfs:domain ex:NetworkConnection ;
23 rdfs:range xs:integer .
24 ex:VideoOnDemandService rdfs:subClassOf ex:Service .
25

26 // capability description example
27 ex:VideoOnDemandSubscriptionPrecondition rdf:type wl:Condition ;
28 rdf:value ”
29 ?customer[hasConnection hasValue ?connection]
30 memberOf Customer and
31 ?connection[providesBandwidth hasValue ?y]
32 memberOf NetworkConnection and
33 ?y > 1000
34 ”ˆˆwsml:AxiomLiteral .
35

36 ex:VideoOnDemandSubscriptionEffect rdf:type wl:Effect ;
37 rdf:value ”
38 ?customer[hasService hasValue ?service]
39 ”ˆˆwsml:AxiomLiteral .
40

41 // definition of the axiom for WSML language
42 wsml:AxiomLiteral rdf:type rdfs:Datatype .
43

44 // non−functional property example
45 ex:PriceSpecification rdfs:subClassOf wl:NonFunctionalParameter .
46 ex:VideoOnDemandPrice rdf:type ex:PriceSpecification ;
47 ex:pricePerChange ”30”ˆˆex:euroAmount ;
48 ex:installationPrice ”49”ˆˆex:euroAmount .
49

50 // classification example
51 ex:SubscriptionService rdf:type wl:ClassificationRoot .
52 ex:VideoSubscriptionService rdfs:subClassOf ex:SubscriptionService .
53 ex:NewsSubscriptionService rdfs:subClassOf ex:SubscriptionService .

Listing 2. Example of domain-specific service ontology

A1: Annotations of XML Schema (ontology). The schema used in WSDL to de-
scribe messages, i.e., the element declarations and type definitions, can carry reference
annotations linking to classes from the service information model ontology.

A2: Annotations of XML Schema (transformations). To be able to communicate
with a service, the client needs to transform data between its semantic model and the
service-specific XML message structures. The schema may contain transformation an-
notations which specify the appropriate mappings.



1 <xs:element name=”NetworkConnection” type=”NetworkConnectionType”
2 sawsdl:modelReference=”http://example.org/onto#NetworkConnection”
3 sawsdl:loweringSchemaMapping=”http://example.org/NetCn.xslt”/>

Listing 3. Example of annotations A1 and A2

Listing 3 shows an example of annotations A1 and A2 (the lowering transformation
is omitted for brevity). Below, Rule 1 defines consistency of A1 and A2 annotations
on schema components; Rule 2 defines completeness of these annotations on element
declarations used as operation input and output messages.

Rule 1 (consistency) Let S be a schema, and OI be an ontology. If for any m ∈ {x}S
there exist the annotations ref (m,c1) (A1) and lower(m, f (c1)) (A2), then it must hold
that f (c1) = m. Analogously, if for any n ∈ {x}S there exist the annotations ref (n,c2)
(A1) and lift(n,g(n)) (A2), then it must hold that g(n) = c2.

Rule 2 (completeness) Let S be a schema, and I be an interface. For each m ∈ {x}S
where m is the input message element of any operation in {op}I , the element must have
consistent annotations ref (m,c1) (A1) and lower(m, f (c1)) (A2). Analogously, for each
n ∈ {x}S where n is the output message element of any operation in {op}I , the element
must have consistent annotations ref (n,c2) (A1) and lift(n,g(n)) (A2).

A3: Annotations of WSDL Interface and Service (functional). Functional descrip-
tions (both capabilities and categories) apply both to concrete web services and to the
reusable and abstract interfaces. A reference annotation points from a service or an in-
terface to its appropriate functional description. Listing 4 shows an example of multiple
A3 annotations:

1 <wsdl:interface name=”NetworkSubscription”
2 sawsdl:modelReference=”http://example.org/onto#VideoSubscriptionService
3 http://example.org/onto#VideoOnDemandSubscriptionPrecondition
4 http://example.org/onto#VideoOnDemandSubscriptionEffect” >

Listing 4. Example of annotations A3

Please note that a WSDL interface may be shared by multiple services, therefore the
functional description of the interface should be general. A concrete functional descrip-
tion attached to the service then refines the functional description of the interface. Ad-
ditionally, aggregate interfaces or services (i.e., those that combine multiple potentially
independent functionalities) may be annotated with multiple functional descriptions.
Rule 3 defines consistency for A3 annotations: each functionality of a service must be
a restriction of some functionality of the service’s interface (see Definition 1 and Defi-
nition 2). This allows discovery to first find appropriate interfaces and then only check
services that implement these interfaces. Rule 4 is analogous to Rule 3 with the differ-
ence that it applies to interface extension12, ensuring that functionality cannot be lost
through WSDL interface extension.

Rule 3 (consistency) Let W be a service and I be an interface such that W implements I.
Then, for each annotation ref (W,F) (A3) there must exist an annotation ref (I,G) (A3)
such that F ≤ G.
12 Interface extension is a feature of WSDL 2.0.



Rule 4 (consistency) Let I and J be some interfaces such that I extends J. Then, for
each annotation ref (I,F) (A3) there must exist an annotation ref (J,G) (A3) such that
G≤ F .

A4: Annotations of WSDL Interface operations (functional). Functional descrip-
tions (both capabilities and categories) apply also to interface operations, to indicate
their particular functionalities. A reference annotation points from an operation to its
appropriate functional description.

Functional annotation of interface operations can be used for services whose interfaces
are simply collections of standalone operations. For example, a network subscription
service may offer independent operations for subscription to a bundle, cancellation of
a subscription, or price inquiry. A client will generally only want to use one or two of
these operations, not all three. This shows that service discovery can, in such cases,
become operation discovery. Also, operation annotations can be used for defining the
order in which the operations should be invoked (see Section 5.1).

Rule 5 defines completeness for A4 annotations: all operations within an interface
must be annotated with a functional description. This rule ensures that no operation is
left invisible to the automated clients.

Rule 5 (completeness) For all o ∈ {op}I there must exist some functional description
F (capability or category) such that ref (o,F) is defined.

Please note that annotations A3 and A4 apply to both types of functional descriptions,
i.e., a capability or a category from some functional classification. It is even possible to
combine them for a service, interface and its operations.

A5: Annotations of WSDL Service, Endpoints, and Binding (non-functional). Non-
functional descriptions apply to a concrete instance of a Web service, that is, a Service,
its Endpoints, or its Binding. A reference annotation can point from any of these com-
ponents to a non-functional property. Listing 5 shows an example of annotation A5:

1 <wsdl:service name=”ExampleCommLtd”
2 interface=”NetworkSubscription”
3 sawsdl:modelReference=”http://example.org/onto#VideoOnDemandPrice”>
4 <wsdl:endpoint ...
5 </wsdl:service>

Listing 5. Example of annotation A5

Please note that non-functional descriptions are always specific to a concrete service,
therefore, annotating interfaces or interface operations with non-functional properties
is not defined. In case non-functional properties need to be specified on the operations
(for example, different operations may have different invocation micropayment prices),
a WSDL binding operation components (which mirror the operations of some interface)
may be used to capture these properties. Due to the domain-specific nature of non-
functional properties, WSMO-Lite cannot formulate any consistency or completeness
rules for non-functional descriptions.



5 On Top of WSMO-Lite Annotations

WSMO-Lite annotations for Web services allow additional tasks on top: in particular
we show implicit representation of a service choreography and illustrate the overall use
of WSMO-Lite annotations for various SWS tasks essential for the client’s automated
decisions about services.

5.1 Implicit Choreography
In this section we show how WSMO-Lite interface operation annotations implicitly rep-
resent a choreography, understood according to [9] as a protocol from a single service’s
point of view13, and formalized as an Abstract State Machine (ASM, [2]) as

X = (Σ,L) (5)

where Σ ⊆ ({x}∪C∪R∪E) is the signature of symbols, i.e., variable names {x} or
identifiers of elements from C,R,E of some ontology OI ; and L is a set of rules. Fur-
ther, we denote by ΣI and ΣO the input and output symbols of the choreography (subsets
of C∪R∪E), corresponding to the input data sent to the service and the returned output
data. Each rule r ∈ L defines a state transition r : rcond → reff where rcond is an expres-
sion in logic L(Σ) which must hold in a state before the transition is executed; reff is
an expression in logic L(Σ) describing a condition which holds in a state after the ex-
ecution. And finally, we use ontology elements as conditions (as in c1 ∈ OI : c1 ∧φpre

within the algorithm), by which we mean that there exists an entity in the knowledge
base which fits the description of the ontology element; for example, if the ontology
element c1 is a class, the knowledge base contains an instance of this class.

We construct the choreography from capability annotations of interface operations,
according to the following algorithm.

Inputs:
– An interface I with operations {op}I , ontology OI , and a set of capabilities {K}.
– Complete A4 annotations using only capabilities from {K} for all {op}I .
– Consistent and complete A1 and A2 annotations using OI for all input and output

messages of operations {op}I .

Output:
– Choreography X with ΣI , ΣO and L.

Algorithm:
1: for all ref (op,K), op ∈ {op}I , K = (φpre,φeff ) ∈ {K} do
2: get ref (m,c1) where m is the input message of op, c1 ∈ OI ; add c1 to ΣI .
3: get ref (n,c2) where n is the output message of op, c2 ∈ OI ; add c2 to ΣO.
4: if op.mep in {in-out, in-only, out-only} then
5: create the rule r: rcond = c1∧φpre, reff = c2∧φeff ; add r to L.
6: else if op.mep in {out-in} then
7: create the rule r1: rcond

1 = φpre; reff
1 = c2; add r1 to L.

13 WS-CDL defines a different type of a choreography, i.e., as a common behavior of collaborat-
ing parties. The relationship of WSMO-Lite to WS-CDL is an open research question.



8: create the rule r2: rcond
2 = c1∧ c2; reff

2 = φeff ; add r2 to L.
9: end if

10: end for
The algorithm creates the sets of choreography input and output symbols from the se-
mantic representations of the input and output messages of all the operations (lines
2–3). In addition, it creates choreography rules where the conditions contain assertions
about the input messages and the effects contain assertions about output messages of
operations. The algorithm creates one rule for operations with the in-out, in-only or
out-only MEPs (lines 4–5). Since the ASM rules always represent an in-out interaction,
two rules need to be created for operations with the out-in MEP: one representing the
output and one the following input interaction. In order to further illustrate the results
of the algorithm, Table 1 shows the resulting rules for the four MEPs (please note,
that we do not currently cover fault messages). Here, a transition rule rcond → reff is
represented as if rcond then reff ; the symbols msg1. . .msg6 refer to schema elements
used for input/output messages of operations; the symbols c1 . . .c6 refer to identifiers
of semantic descriptions of these messages; ref (m,c) denotes the A1 annotation, w: is a
shortening for the URI http://www.w3.org/ns/wsdl/ and ex: for some application
URI http://example.org/onto#.

MEP and Rule WSDL Operation
in-out:
if c1∧cnd1 then c2∧eff1
c1 ∈ ΣI , ref (msg1, c1)
c2 ∈ ΣO, ref (msg2, c2)

<operation name="op1" pattern="w:in-out"
sawsdl:modelReference="ex:cnd1 ex:eff1">

<input element="msg1"/>
<output element="msg2"/>

</operation>
in-only:
if c3∧cnd2 then eff2
c3 ∈ ΣI , ref (msg3, c3)

<operation name="op2" pattern="w:in-only">
sawsdl:modelReference="ex:cnd2 ex:eff2">

<input element="msg3"/>
</operation>

out-only:
if cnd3 then c4∧eff3
c4 ∈ ΣO, ref (msg4, c4)

<operation name="op3" pattern="w:out-only">
sawsdl:modelReference="ex:cnd3 ex:eff3">

<output element="msg4"/>
</operation>

out-in:
if cnd4 then c5
if c5∧ c6 then eff4
c5 ∈ ΣO, ref (msg5, c5)
c6 ∈ ΣI , ref (msg6, c6)

<operation name="op4" pattern="w:out-in">
sawsdl:modelReference="ex:cnd4 ex:eff4">

<output element="msg5"/>
<input element="msg6"/>

</operation>
Table 1. MEPs, Rules and WSDL operations

With a choreography constructed according to this algorithm, the client is able to auto-
matically invoke a service, i.e., its operations in the correct and expected order.

5.2 Service Use Tasks

In this section, we discuss the use of the different types of WSMO-Lite annotations
for automation of the various tasks that the client may perform with services. Not all
annotations described in Section 4.2 are always needed, only those required by the



tasks at hand in a particular domain-specific setting. Table 2 provides a summary, with
A1. . . A5 denoting the annotations and R1. . . R5 denoting the rules. The symbol •marks
the annotations and rules required to automate a given task, and the symbol ◦ marks
rules that are helpful but not absolutely required.

Service Task A1 A2 A3 A4 A5 R1 R2 R3 R4 R5
Service Discovery • ◦ ◦
Operation Discovery • ◦
Composition •
Ranking and Selection •
Operation Invocation • • • •
Service Invocation • • • • • ◦
Data Mediation • • •
Process Mediation • • • • • ◦

Table 2. Service Tasks, Annotations and Rules

– Service Discovery, operating on functional descriptions (capabilities or categories),
requires annotations A3. Rule 3 and Rule 4 help improve the scalability of the
discovery through narrowing down a set of interfaces and services to be searched. If
the discovery mechanism determines that an interface is not suitable, all the services
implementing it and all the interfaces extended by it can immediately be discarded
from further consideration.

– Operation Discovery, operating on functional descriptions of individual operations,
requires annotations A4. Operation discovery might be useful with interfaces that
are collections of standalone, independent operations. Rule 5 ensures that no oper-
ation is left invisible to this discovery process.

– Composition uses capability descriptions, i.e., annotations A3 restricted to capabil-
ities, to put together multiple services to achieve a complex goal.

– Ranking and Selection processes non-functional descriptions, i.e., annotations A5,
to select the service that most suits some particular requirements.

– Operation Invocation is the invocation of a single operation, requiring data transfor-
mations between the semantic model on the client and the service’s XML message
structure. This requires A1 and A2 annotation, kept consistent by Rule 1. Rule 2
ensures that all operation messages have these annotations.

– Service Invocation requires the operations of the service to be invoked in a proper
order. This task therefore uses the implicit interface choreography (Section 5.1)
and requires annotations A4. Rule 5 ensures that no operation is omitted from the
choreography.

– Data Mediation uses data annotations (A1 and A2) — assuming two different schemas
correspond to a single shared ontology, the A1 annotations make it possible to dis-
cover such a correspondence, and the A2 annotations then enable data mapping
transformations: lifting from one schema and lowering to the other.

– Process Mediation combines data mediation and choreography processing and thus
requires the combined annotations A1, A2 and A4 . As described in [4], process me-
diation is applied during conversation between two services mediating their chore-
ographies and messages.



This provides certain modularity to WSMO-Lite, enabling different environments using
this service ontology to mix and match the annotations as necessary for the required
tasks. On top of already being light-weight, WSMO-Lite provides value even if only
parts of it are used.

6 Related work
The major stream of related work is in the frameworks for Semantic Web Services
(SWS), including WSMO [10], Semantic Markup for Web Services (OWL-S [12]) and
Web Service Semantics (WSDL-S [1]). WSMO is a top-down conceptual model for
SWS that defines four top-level components: ontologies, mediators, goals and web ser-
vices. As we already mentioned, WSMO was the major input for WSMO-Lite. On
the other hand, OWL-S was the first major ontology for SWS defining three inter-
linked ontologies: Service Profile (for the functional and non-functional descriptions),
Service Model (for the behavioral descriptions), and Service Grounding (for physi-
cal Web service access). There are also recent works on OWL-S grounding that uses
SAWSDL [8,7]. In comparison with that work, WSMO-Lite takes the additional step
of simplifying the annotations into a lightweight ontology. WSDL-S was created in the
METEOR-S14 project as a specification of how WSDL can be annotated with seman-
tic information. WSDL-S itself does not provide a concrete model for SWS, instead
it makes the assumption that the concrete model will be expressible as annotations in
WSDL and XML Schema documents. WSDL-S was taken as the basis for SAWSDL.
In addition, there is a major orthogonal work to WSMO-Lite called SA-REST [11],
aiming to enrich the informal descriptions of RESTful services, usually available in
HTML, with RDFa15 annotations. This work is complementary to WSMO-Lite as it
could serve as an additional annotation mechanism for WSMO-Lite service ontology
used for RESTful services. We will work on such integration withing the W3C SWS-
Testbed XG.

7 Conclusion and Future Work
In this paper, we describe the latest results from the development of WSMO-Lite, a
minimal lightweight ontology for Semantic Web Services, building on the newest W3C
standards. WSMO-Lite fills in SAWSDL annotations, and thus enables the Semantic
Service Stack, open for various customizations according to domain-specific require-
ments, languages of required expressivity and domain-specific ontologies. WSMO-Lite
supports the idea of incremental enhancements of SAWSDL as Amit Sheth points out
in [6]: “Rather than look for a clear winner among various SWS approaches, I believe
that in the post-SAWSDL context, significant contributions by each of the major ap-
proaches will likely influence how we incrementally enhance SAWSDL. Incrementally
adding features (and hence complexity) when it makes sense, by borrowing from ap-
proaches offered by various researchers, will raise the chance that SAWSDL can present
itself as the primary option for using semantics for real-world and industry-strength
challenges involving Web services.”

14 http://lsdis.cs.uga.edu/projects/meteor-s/
15 http://www.w3.org/TR/xhtml-rdfa-primer/



In our future work we plan to work on validation of WSMO-Lite annotations, to-
gether with a compiler for WSMO-Lite descriptions. We also plan to integrate WSMO-
Lite with other research efforts within the W3C SWS-Testbed XG (such as already
mentioned SA-REST) and to support service mashups with the WSMO-Lite ontology.
In addition, we plan to integrate the WSMO-Lite ontology with the results of the se-
mantic business processes research.

References

1. R. Akkiraju, et al. Web Service Semantics - WSDL-S, available at
http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/. Tech. rep., LSDIS Lab, 2005.

2. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

3. J. de Bruijn, D. Fensel, and H. Lausen. D34v0.1: The Web Compliance of WSML. Technical
report, DERI, 2007. Available from: http://www.wsmo.org/TR/d34/v0.1/.

4. T. Haselwanter, et al. WSMX: A Semantic Service Oriented Middleware for B2B Integra-
tion. In ICSOC, pp. 477–483. 2006.

5. I. Horrocks. Owl: A description logic based ontology language. In CP, pp. 5–8. 2005.
6. D. Martin and J. Domingue. Semantic web services: Past, present and possible futures (sys-

tems trends and controversies). IEEE Intelligent Systems, 22(6), 2007.
7. D. Martin, M. Paolucci, and M. Wagner. Bringing Semantic Annotations to Web Services:

OWL-S from the SAWSDL Perspective. In K. Aberer, et al., (eds.) The Semantic Web, vol.
4825 of LNCS, pp. 340–352. Springer, 2007.

8. M. Paolucci, M. Wagner, and D. Martin. Grounding OWL-S in SAWSDL. In B. J. Krämer,
K.-J. Lin, and P. Narasimhan, (eds.) ICSOC, vol. 4749 of Lecture Notes in Computer Science,
pp. 416–421. Springer, 2007.

9. D. Roman and J. Scicluna. Ontology-based choreography of wsmo services. Wsmo d14
final draft v0.3, DERI, 2006. Available at: http://www.wsmo.org/TR/d14/v0.3/.

10. D. Roman, et al. Web Service Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.
11. A. P. Sheth, K. Gomadam, and J. Lathem. SA-REST: Semantically Interoperable and Easier-

to-Use Services and Mashups. IEEE Internet Computing, 11(6):91–94, 2007.
12. The OWL Services Coalition. OWL-S 1.1 Release, November 2004. Available at

http://www.daml.org/services/owl-s/1.1/.
13. T. Vitvar, J. Kopecky, and D. Fensel. WSMO-Lite: Lightweight Semantic Descriptions for

Services on the Web. In ECOWS. 2007.


