
Standards

60 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

SAWSDL: Semantic
Annotations for WSDL
and XML Schema

W eb services add a new level of functional-
ity to the Web, a step toward an open
environment of distributed applications.

Although current Web service technologies built
around SOAP and the Web Services Description
Language (WSDL) form a solid foundation, scaling
will be difficult without a proper degree of
automation. In large-scale, open, and heteroge-
neous environments, Web services’ success
depends on resolving the fundamental challenges
that existing integration technologies don’t
address — namely, search, integration, and medi-
ation. XML descriptions of Web services support
integration in rigid workflow or services configu-
rations, but automation requires more than a
description of the data structure and syntax. We
can achieve increased automation using semantic
technologies, such as those underlying the Seman-
tic Web, as described by Tim Berners-Lee and col-
leagues in their seminal Semantic Web article.1

Building on WSDL, Semantic Annotations for
WSDL and XML Schema (SAWSDL; www.w3.org/
TR/sawsdl) adds hooks that let WSDL components
point to their semantics (see Figure 1). SAWSDL
itself doesn’t provide any specific semantics;
rather, it enables us to annotate the purely syntac-

tic WSDL descriptions with pointers to semantic
concepts. Software systems can interpret these
concepts to (partially or fully) automate such tasks
as service discovery, composition, selection, nego-
tiation, mediation, and invocation.

Web Services and
the Semantic Web
The Web supports distributed computing, and the
term service-oriented architecture (SOA) was creat-
ed in particular as a generalization of Web servic-
es technologies. The Web is already a vast data
repository, and Web services are growing very
quickly. To make sense of all this data and these
services, the Semantic Web builds on the founda-
tions of logic and knowledge representation to
help computers find the right information for their
users. Finding and combining information is only
part of the vision, however. Computers must also
be able to find and combine services on the Web
to free users’ hands and make the Web of services
scale together with the Web of data.

SAWSDL is the World Wide Web Consortium’s
(W3C; www.w3.org) first step toward standardiz-
ing technologies for Semantic Web services
(SWSs). As a standard, it provides a common

Web services are important for creating distributed applications on the Web. In

fact, they’re a key enabler for service-oriented architectures that focus on service

reuse and interoperability. The World Wide Web Consortium (W3C) has recently

finished work on two important standards for describing Web services — the

Web Services Description Language (WSDL) 2.0 and Semantic Annotations for

WSDL and XML Schema (SAWSDL). Here, the authors discuss the latter, which

is the first standard for adding semantics to Web service descriptions.

Jacek Kopecký • Digital Enterprise Research Institute, Innsbruck
Tomas Vitvar • Digital Enterprise Research Institute, Galway
Carine Bournez • W3C, Europe
Joel Farrell • IBM

NOVEMBER • DECEMBER 2007 61

SAWSDL

ground for the various ongoing efforts
toward SWS frameworks, such as the
Web Service Modeling Ontology
(WSMO; www.wsmo.org)2 and the
OWL-based Web Service Ontology
(OWL-S; www.daml.org/services/owl-s).

The major technologies for Web
services are SOAP and WSDL. SAWS-
DL extends WSDL with pointers to
semantics that are crucial for achiev-
ing automation. Figure 2 shows a stack
of Web services description layers. The
base is formed by WSDL and its bind-
ings into lower-level communication
technologies, especially HTTP and
SOAP. On top of WSDL is a layer of
semantic annotations that the higher
layer of the service ontology uses. The
top represents the application and
domain-specific ontologies and other
semantic descriptions.

SAWSDL Working Group
In 2004, the W3C started receiving
submissions of specifications for se-
mantic descriptions of Web services
(OWL-S, WSMO, and others). In June
2005, it held the Workshop on Frame-
works for Semantics in Web Services
to discuss the proposed steps. The
workshop identified a lack of agree-
ment on what Semantic Web services
should do; yet, most participants con-
ceded that semantics are necessary in
Web service descriptions and that
building on WSDL, as WSDL-S3 pro-
poses, would be a good start.

In April 2006, the W3C formed a
working group to standardize semantic
annotations for WSDL, which resulted
in the recommendation for SAWSDL,
published in August 2007. SAWSDL
builds mainly on WSDL 2.0,4 but also
supports the still-prevalent WSDL 1.1.5

On the semantic side, SAWSDL is inde-
pendent of any ontology technology
and assumes that semantic concepts
can be identified via URIs. For instance,
SWS frameworks can use the Resource
Description Framework (RDF) and Web
Ontology Language (OWL) with SAWS-
DL to annotate Web services.

The working group included repre-
sentatives from important Semantic
Web research centers such as the Dig-
ital Enterprise Research Institute (DERI)
Innsbruck (www.deri.at), DERI Galway
(www.deri.ie), Wright State University
(www.wright.edu), Georgia University
(www.uga.edu), and Open University
(www.open.ac.uk), as well as major
industry organizations interested in
Semantic Web services, such as IBM,
ILOG (www.ilog.com), Telecom Italia
(www.telecomitalia.it), CA (www.ca.
com), and Scapa Technologies (www.
scapatech.com).

Along with the SAWSDL specifica-
tion, the working group produced a
companion usage guide (www.w3.
org/TR/sawsdl-guide/) to provide more
examples on how SWS solutions can
use SAWSDL. As part of the standard-

ization process, the working group
also produced a listing of already
existing tools that use SAWSDL (see
the sidebar “SAWSDL Implementa-
tions” for more information).

WSDL and SAWSDL
SAWSDL is a set of extensions for
WSDL, which provides a standard
description format for Web services.
WSDL uses XML as a common flexible
data-exchange format and applies
XML Schema for data typing. It
describes a Web service on three levels:

• Reusable abstract interface defines
a set of operations, each represent-
ing a simple exchange of messages
described with XML Schema ele-
ment declarations.

• Binding describes on-the-wire mes-

Figure 1. The Web Services Description Language (WSDL) with Semantic
Annotations for WSDL and XML Schema (SAWSDL). The figure shows WSDL
components and the SAWSDL annotations that point to semantic concepts for
specifying semantics or to schema mappings for data transformations.

In
te

rf
ac

e

Element declaration

Type definition

Fault reference

Fault

MEP

Operation style

Operation

T
yp

es

Msg reference

Fault reference

Fault

Operation

Bi
nd

in
g

Endpoint

Se
rv

ic
e

Msg label

WSDL descriptionSchema
mappings

Model
references

Msg reference

62 www.computer.org/internet/ IEEE INTERNET COMPUTING

Standards

sage serialization; it follows the
structure of an interface and fills in
the necessary networking details
(for instance, for SOAP or HTTP).

• Service represents a single physical
Web service that implements a sin-
gle interface; the Web service can
be accessed at multiple network
endpoints.

WSDL aims to describe the Web
service on a syntactic level: it speci-
fies what messages look like rather
than what they mean. SAWSDL is a
simple extension layer on top of
WSDL that lets WSDL components
specify their semantics. SAWSDL
defines extension attributes that we
can apply to elements both in WSDL

and in XML Schema to annotate
WSDL interfaces, operations, and their
input and output messages.

The SAWSDL extensions take two
forms: model references that point to
semantic concepts and schema map-
pings that specify data transforma-
tions between messages’ XML data
structure and the associated seman-
tic model. In Table 1, we summarize
the complete syntax introduced by
SAWSDL.

Model References
A model reference is an extension
attribute, sawsdl:modelReference,
that we can apply to any WSDL or
XML Schema element in order to point
to one or more semantic concepts. The

value is a set of URIs, each one identi-
fying some piece of semantics.

Model references generically refer
to semantic concepts, thus serve as
hooks for attaching semantics. As we’ll
illustrate later, we can use model ref-
erences to describe the meaning of
data or to specify the function of a
Web service operation.

Schema Mappings
SAWSDL provides two attributes for
attaching schema mappings: sawsdl:
liftingSchemaMapping and sawsdl:
loweringSchemaMapping. Lifting map-
pings transform XML data from a
Web service message into a semantic
model (for instance, into RDF data
that follows some specific ontology),
whereas lowering mappings trans-
form data from a semantic model into
an XML message.

Lifting and lowering transforma-
tions are useful for communicating
with a Web service from a semantic
client — for example, the client soft-
ware will lower some of its semantic
data into a request message and send
it to the Web service; when the client
software receives the response mes-
sage, it can lift the data contained in
the message for semantic processing
(see Figure 3a).

We can also use lifting and low-

Figure 2. Extended Web service specification stack. The main description language,WSDL, is tightly bound to the
underlying communication technologies. SAWSDL is a layer above WSDL that connects it to the semantic technologies —
a service ontology that describes the common aspects of Web services and domain ontologies that fill in the actual
application-specific details.

Non-semantic
descriptions

Invocation

Semantic
descriptions

Schema Interface Operations Binding Service

modelReferences SchemaMappings

Information

Domain ontology

Functional

Capability
categorization

Behavioral

Choreography

Non-functional

Policy
Service semantics
RDFS, OWL, RIF,
WSML, and so on.

Service ontology
RDFS

SAWSDL

WSDL
XML/XML

Schema

SOAP, HTTP,
and so on

Messaging, communication, and so on

Table 1. Semantic Annotations for WSDL
and XML Schema (SAWSDL) syntax summary.

Name Description
modelReference A list of references to concepts in some semantic models

(XML attribute)
liftingSchemaMapping A list of pointers to alternative data-lifting transformations

(XML attribute)
loweringSchemaMapping A list of pointers to alternative data-lowering transformations

(XML attribute)
attrExtensions Attaches attribute extensions where only element extensibility

is allowed (XML element)

NOVEMBER • DECEMBER 2007 63

SAWSDL

ering annotations for XML data
mediation through a shared ontology
(see Figure 3b). An automated medi-
ator can lift the data in one XML
format to data in the shared ontol-
ogy and then lower it to another
XML format using the lifting anno-
tation from the first format’s schema
and the lowering one from the sec-
ond schema.

In XML Schema, we describe an
XML element’s content by a type
definition and add the element’s name
as an element declaration. SAWSDL
model reference and schema mapping
annotations can be both on types and
on elements; in fact, a type’s annota-
tions also apply to the elements of
that type.

In particular, a SAWSDL processor
merges the type’s model references
with the element’s model references,
and all of them apply to the element.
Schema mappings, on the other hand,
are only propagated from the type if
the element doesn’t declare any
schema mappings of its own. This lets
a type provide generic schema map-
pings and an element specify more
concrete mappings appropriate for the
type’s specific use.

WSDL 1.1 Support
Although SAWSDL is built primarily for
WSDL 2.0, it also supports the older and
more prevalent version, WSDL 1.1.
Essentially, both model references and
schema mappings apply in the same
places in both WSDL versions. Howev-
er, the XML Schema for WSDL 1.1
allows only element extensions on oper-
ations, so a WSDL 1.1 document with
the SAWSDL modelReference attribute
on an operation wouldn’t be valid. To
overcome this obstacle, SAWSDL defines
the element attrExtensions to carry

extension attributes in places where
only element extensibility is allowed.
Instead of putting the model reference
directly on the operation element,
SAWSDL can put it on the attrExten-
sions element, then insert that into the
operation element.

On Top of SAWSDL:
Semantics for
Web Services
SAWSDL alone isn’t an actual frame-
work for modeling Semantic Web
services: it needs a concrete service

Figure 3. Lifting and lowering semantic data. We can use lifting and lowering
transformations for (a) Web service communication and (b) XML data mediation.

Lifting

Common RDF ontology

Lowering

Web serviceXML messagesClient RDF data

SOAP communication
Lifting

Lowering

(a)

(b)

SAWSDL Implementations

T he W3C standardization process
requires that every specification under

development be tested for implementabili-
ty before it becomes a final W3C recom-
mendation.Every feature of the specification
should be functional in at least one im-
plementation, and, optimally, would be
interoperable between at least two imple-
mentations.A working group wishing to pro-
ceed with a specification needs to create an
implementation report.The Semantic Anno-
tations for WSDL (SAWSDL) working
group’s implementation report (available at
www.w3.org/2002/ws/sawsdl/CR) shows
several implementation categories.

SAWSDL’s direct implementations are
parser APIs that make the annotations avail-
able to applications, and tools that let users

annotate Web Services Description Language
(WSDL) documents with semantic annota-
tions. In the first category,the Woden API for
WSDL 2.0 and the WSDL4J API for WSDL
1.1 were both extended to handle SAWSDL
annotations.Many Java-based tools use these
APIs, including Axis 2, the Apache Web serv-
ices stack. Two GUI tools help annotate
WSDL documents with semantics: Radiant
from the University of Georgia and the Web
Service Modeling Ontology (WSMO) Studio
from Ontotext.

Because SAWSDL is a specification for
hooks for attaching semantics, its value is
mainly in actual applications that add
semantics to Web service descriptions. The
SAWSDL implementation report mentions
several such applications. In particular, we

can attach both OWL-S and WSMO, the
major Semantic Web services frameworks,
to WSDL service descriptions using SAWS-
DL, as specified in these frameworks’
respective grounding definitions.On top of
that, we can use SAWSDL for simple Web
service discovery in a tool called Lumina
from the University of Georgia and for
semantic data matching and mediation in
Semantic Tools for Web Services from IBM.
Finally,we can use SAWSDL to add seman-
tic annotations to Business Process
Execution Language for Web Services
(BPEL4WS), a use that the SAWSDL work-
ing group didn’t directly anticipate; ne-
vertheless, such unexpected uses are
appropriate and well within the spirit of the
SAWSDL specification.

64 www.computer.org/internet/ IEEE INTERNET COMPUTING

Standards

ontology that specifies what seman-
tics we can attach to the SAWSDL
hooks. This section shows what a very
lightweight service ontology could
look like.

Adding semantics to Web servic-
es mainly aims to automate certain
tasks that must be performed with
services before or during invocation.
Based on various efforts in SWS and
service-oriented computing commu-
nities (such as OWL-S and WSMO),
the generally accepted tasks are dis-
covery, negotiation, filtering, selec-
tion, and invocation (as Figure 4
shows), complemented by composi-
tion and interspersed with mediation.
To perform these tasks, a user or an
application has a semantic client –
that is, a service requester or a mid-
dleware system that performs various

combinations of tasks according to a
particular application’s requirements.
More information about intelligent
middleware systems for SWSs is
available elsewhere.6

Different tasks require different
semantic descriptions. We can describe
four aspects of services semantically:

• Information semantics define an
information model (an ontology
together with instance data). Other
semantic descriptions use informa-
tion semantics and usually need
them when performing data media-
tion through ontology merging or
mapping/aligning.

• Functional semantics describe the
service capability — that is, what
the service can offer its users.
They're used for service discovery,

comparing a user’s need (in the
form of a goal description) and the
functional descriptions of available
Web services. Service composition
also uses functional semantics
(together with information seman-
tics) when creating a plan for a
given goal.

• Nonfunctional semantics define
additional constraints and policies
over service functionality that
functional semantics don’t cap-
ture. Nonfunctional semantics are
needed to match discovered serv-
ices against users’ preferences and
constraints.

• Behavioral semantics describe a
service’s public and private behav-
ior. A description of the public
behavior is a protocol that each
client must follow in order to con-
sume the service’s functionality. It
guides negotiation with the serv-
ice as well as its invocation. Ser-
vice discovery or composition
might also incorporate compatibil-
ity checks or process mediation
between the client’s and the ser-
vice’s expected behaviors.

Table 2 summarizes how the various
types of semantics fit into SAWSDL.

Information Semantics
Several options exist for expressing
ontologies; they typically vary in
language expressivity, and the avail-
able reasoning and querying algo-
rithms range in performance and
scalability. The standard options are

Table 2. Semantic annotations for Web Services Description Language (WSDL) components.

WSDL component Semantics type Description
Schema Information Ontology pointers, mappings
Interface Functional General, reusable capability or category
Interface operation Functional Concrete operation capability or category
Service Functional Concrete service capability or category
Interface Behavioral General, reusable behavioral description
Service Behavioral Concrete service behavior
Service and endpoint Nonfunctional Nonfunctional properties and policies
Binding (and subcomponents) Nonfunctional Operation-specific nonfunctional properties

Figure 4. Tasks performed by a Semantic Web services client system. Starting
with the discovery of Web services applicable to a given user goal, and ending
with actual invocation of a selected Web service, these tasks can be automated
using semantic technologies.

Web
services

SOAP messages

Registry

User
goal

Web
services

Only suitable
offers

Discovery Negotiation Filtering Ranking,
selection

Invocation

Selected
offer

Concrete
offers

What do you offer?

Published descriptions

List
services

NOVEMBER • DECEMBER 2007 65

SAWSDL

RDF Schema (RDFS) and OWL, with
its subsets OWL-Lite and OWL-DL (a
fragment of Description Logics). We
can draw further expressivity from
rule languages, such as the upcoming
W3C Rule Interchange Format (RIF),
especially for capturing logical con-
ditions. (See the “Semantic Web Lan-
guages” sidebar for more details on
the available languages for express-
ing information semantics.)

Information semantics apply to the
XML schema components that WSDL
uses to describe messages — in partic-
ular, element declarations and type def-
initions, as Figure 5 shows (lines 6
through 8). Both can carry SAWSDL
model references that link them to
classes in the ontology. The model ref-
erences are accompanied by lifting and
lowering schema mappings to enable
data exchange between the semantic
client and the XML-based Web service.

Functional Semantics
Functional semantics is the formal
description of service functionality,
describing what a service can offer to its
clients when they invoke it. We can
describe this at two levels of granularity:

• Categorization — the service func-
tionality falls within some catego-
ry in an agreed classification

schema, such as the United Nations
Standard Products and Services
Code (UNSPSC; www.unspsc.org)
or the RosettaNet Technical Dictio-
nary (RNTD; portal.rosettanet.org/
cms/sites/RosettaNet/Standards/R
Standards/dictionary).

• Capability description — we can
also define the functionality using
logical conditions that must hold
before and after service invoca-
tion, so called preconditions and
effects.

Here, we show a simple capability
ontology that would be part of a larg-
er service ontology:

sem:Capability
rdf:type rdfs:Class.

sem:hasPrecondition
rdf:type rdf:Property ;
rdfs:domain sem:Capability ;
rdfs:range sem:Axiom.

sem:hasEffect
rdf:type rdf:Property ;
rdfs:domain sem:Capability ;
rdfs:range sem:Axiom.

sem:Axiom rdf:type rdfs:Class.

It introduces the class Capability
with predicates hasPrecondition and
hasEffect. Both these predicates’
range is Axiom, meaning an arbitrary

logical expression, which can be writ-
ten in the syntax of any logical lan-
guage, such as RIF or the Web Services
Modeling Language (for example,
WSML-Rule).

Functional semantics apply to the
Web service, which is represented
concretely by the service construct
and abstractly by the reusable inter-
face construct. We use a SAWSDL
modelReference to point from a
service or an interface to its appropri-
ate capability, as we can see in Figure
5 (line 14, and lines 45 to 55). Multi-
ple services might share a WSDL
interface, thus its capability should be
general because it effectively applies
to all services that implement that
interface. A concrete capability at-
tached to the service then refines the
interface’s capability.

The distinction between a general
capability on the interface and a con-
crete, refined capability on the service
enables an SWS discovery algorithm
to first find appropriate interfaces and
then deal only with services that
implement them.

Apart from describing the service
(or the interface) as a whole, we can
also ascribe capabilities to the opera-
tions, again using modelReference
pointers. Describing operation capabil-
ities is especially useful for Web serv-

Semantic Web Languages

S emantic Annotations for WSDL and
XML Schema (SAWSDL) lets us point

to semantics from the Web Services
Description Language (WSDL).But to rep-
resent the semantics,we need to reach for
knowledge representation languages.

The W3C has produced several lan-
guage recommendations for representing
and exchanging knowledge on the Seman-
tic Web. At the core, the Resource
Description Framework (RDF; www.w3.
org/RDF) represents information in graph-
based models with so called triples — that
is, statements in the form <subject,
predicate, object>. The subjects and

objects link the triples into a graph. RDF
provides various syntaxes including RDF/
XML and Notation 3 (N3).

RDF Schema (RDFS) defines constructs
on top of RDF that enable the specification
of lightweight ontologies: RDFS lets us
define classes and properties as well as class
and property hierarchies. On top of RDFS,
the Web Ontology Language (OWL) pro-
vides a more expressive vocabulary along
with a formalism based on description log-
ics. Last but not least, an ongoing effort in
the W3C Rule Interchange Format Work-
ing Group (RIF WG) aims to extend the
existing languages with rules.

Several nonstandard languages are also
available outside the W3C. For instance,
the Web Services Modeling Language
(WSML; www.wsmo.org/wsml) is an
ontology language with a variant called
WSML-Rule that’s based on logic pro-
gramming; the Semantic Web Rule
Language (SWRL; www.daml.org/rules/
proposal) is a proposed rule language
combining OWL and RuleML. Both lan-
guages (and others) were submitted to
W3C as inputs to the RIF work. Because
RIF is in its early stages, we use WSML-
Rule to capture logical expressions in
some examples in this article.

66 www.computer.org/internet/ IEEE INTERNET COMPUTING

Standards

ices whose interface is simply a collec-
tion of stand-alone operations. For
instance, a network subscription serv-
ice might offer independent operations
for subscribing to a bundle, canceling
a subscription, or inquiring about pric-
ing. A client will generally want to use
only one or two of the operations, not
all three. In such cases, instead of serv-

ice discovery, the semantic client
might need to do the more fine-
grained operation discovery.

Categorization and capability des-
cription aren’t exclusive alternatives
— we can combine them. Although
the SAWSDL modelReference URI
values don’t indicate whether the
annotations go to capabilities or cat-

egories (or any other type of seman-
tics, for that matter), the semantic
model will make it clear.

Behavioral Semantics
In general, behavioral semantics is the
formal description that defines a ser-
vice’s external (public) and internal
(private) behavior. The external behav-

Figure 5.Web Services Description Language (WSDL) with semantic annotations, followed by the relevant ontologies. This
listing illustrates how simple semantic models can be attached to a WSDL document for use in a semantic Web service
client system.

1 // the WSDL description
2 <wsdl:description...>
3 <wsdl:types>
4 <xs:schema...>
5 ...
6 <xs:element name="NetworkConnection"

type="NetworkConnectionType"
7 sawsdl:modelReference="http://example.org/

onto#NetworkConnection"
8 sawsdl:loweringSchemaMapping="http://

example.org/NetConn.xslt" />
9 ...
10 </xs:schema>
11 </wsdl:types>
12
13 <wsdl:interface name="NetworkSubscription"
14 sawsdl:modelReference="http://example.org/

onto#VideoOnDemandSubscription" >
15 ...
16 </wsdl:interface>
17 ...
18 <wsdl:service name="ExampleCommLtd"
19 interface="NetworkSubscription"
20 sawsdl:modelReference="http://example.org/

onto#VideoOnDemandPrice">
21 <wsdl:endpoint name="public"
22 binding="SOAPBinding"
23 address="http://example.org/comm.ltd/

subscription" />
24 </wsdl:service>
25 </wsdl:description>
26
27 // and now the ontological definitions
28 // ontology fragment
29 ex:Bundle rdf:type rdfs:Class.
30 ex:NetworkConnection rdf:type rdfs:Class.
31 ex:Service rdf:type rdfs:Class.

32 ex:hasService rdf:type rdf:Property ;
33 rdfs:domain ex:Bundle ;
34 rdfs:range ex:Service.
35 ex:hasConnection rdf:type rdf:Property ;
36 rdfs:domain ex:Bundle ;
37 rdfs:range ex:NetworkConnection.
38 ex:providesBandwidth rdf:type rdf:Property ;
39 rdfs:domain ex:NetworkConnection ;
40 rdfs:range xs:integer.
41 ex:DSLConnection rdf:type rdfs:Class ;
42 rdfs:subClassOf ex:NetworkConnection.
43
44 // interface capability
45 ex:VideoOnDemandSubscription rdf:type

sem:Capability ;
46 sem:hasPrecondition "
47 ?customer[hasConnection hasValue

?connection] memberOf Customer and
48 ?service[requiresBandwidth hasValue ?x] memberOf

Service and
49 ?connection[providesBandwidth hasValue ?y]

memberOf NetworkConnection and
50 ?y > ?x
51 "^^wsml:AxiomLiteral.
52 sem:hasEffect "
53 ?bundle[hasService hasValue ?service and
54 hasConnection hasValue ?connection]

memberOf Bundle
55 "^^wsml:AxiomLiteral.
56
57 wsml:AxiomLiteral rdf:type rdfs:Class;
58 rdfs:subClassOf sem:Axiom.
59
60 // service price
61 ex:VideoOnDemandPrice rdf:type

ex:PriceSpecification ;
62 ex:pricePerChange "30"^^ex:euroAmount ;
63 ex:installationPrice "49"^^ex:euroAmount.

NOVEMBER • DECEMBER 2007 67

SAWSDL

ior describes a protocol that the client
can use to consume the service func-
tionality. The internal behavior des-
cribes a workflow — that is, how the
service’s functionality is aggregated
out of other services. However, inter-
nal behavior isn’t directly interesting
to the semantic client.

We describe public behavior to
define the order in which the client
should invoke the Web service’s oper-
ations. We can do this simply by
describing the operations’ capabilities
(as we discussed in the previous sec-
tion) and letting the client sort out
what operations it needs to invoke, or
we can describe the service’s behavior
explicitly using a dedicated language.
An explicit behavioral description
might be easier for the client to follow,
especially if the client is a device with
limited resources for logical reasoning.

Nonfunctional Semantics
Generally, nonfunctional properties are
incidental details specific to a service’s
implementation or running environ-
ment, independent of its actual pur-
pose, but necessary for successful and
interoperable communication.

Nonfunctional semantics are al-
ways specific to a concrete service (see
Figure 5, line 20); therefore, we don’t
recommend annotating interfaces with
nonfunctional properties. In case they
need to be specified on the granularity
of operations (for example, different
operations might have different invo-
cation micropayment prices), we can
use a WSDL binding or any of its sub-
components to capture these pro-
perties. With SAWSDL, we attach
nonfunctional properties using model-
Reference from any of the WSDL
components to the nonfunctional
semantics model.

Some service constraints that fall
within nonfunctional semantics are
often expressed as policies. Policy lan-
guages such as WS-Policy (www.w3.
org/TR/ws-policy) generally provide
their own means for associating poli-

cies to policy subjects (such as WS-
PolicyAttachment in the WS-Policy
framework). Using a policy framework
for capturing nonfunctional properties
would be an alternative to using
SAWSDL modelReference.

S AWSDL is the first step toward
standardizing SWS. It forms the

basis for interoperation between the
various SWS efforts that previously
couldn’t seem to find any common
ground. As we have shown, SAWSDL
itself isn’t a complete technology for
allowing automation; indeed we must
provide a service ontology and the
appropriate domain ontologies to
describe Web services. The major
SWS frameworks (WSMO and OWL-
S) have already started to embrace
SAWSDL for grounding (connecting
the semantic framework to the WSDL
descriptions of Web services). The
next step is to rework these frame-
works with SAWSDL in mind, refac-
toring them into parts that can be
attached using SAWSDL annotations.
Such a refactored framework based
on RDF and OWL would likely be the
basis for further standardization in
the W3C. You can discuss this article
in the public mailing list at public
-ws-semann@w3.org.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila,

“The Semantic Web,” Scientific Am., vol.

284, no. 5, 2001, pp. 34–43.

2. D. Roman et al., “Web Service Modeling

Ontology,” Applied Ontology, vol. 1, no. 1,

2005, pp. 77–106.

3. K. Verma and A. Sheth, “Semantically

Annotating a Web Service,” IEEE Internet

Computing, vol. 11, no. 2, 2007, pp.

83–85.

4. Web Services Description Language (WSDL)

v. 2.0, World Wide Web Consortium (W3C)

recommendation, June 2007; www.

w3.org/TR/wsdl20.

5. “Web Services Description Language

(WSDL) 1.1,” World Wide Web Consortium

(W3C) note, Mar. 2001; www.w3.

org/TR/wsdl20.

6. T. Vitvar et al., “Semantically-Enabled Ser-

vice-Oriented Architecture: Concepts, Tech-

nology and Application,” Service Oriented

Computing and Applications, vol. 2, no. 2,

2007, pp. 129–154.

Jacek Kopecký is a researcher at the Digital

Enterprise Research Institute in Innsbruck,

Austria. His research interests include

Semantic Web services, and Web technolo-

gies in general. Kopecký has been involved

with Web services standardization since

2001, and he chaired the W3C SAWSDL

working group. Contact him at jacek.

kopecky@deri.at.

Tomas Vitvar is a senior researcher at the Digi-

tal Enterprise Research Institute in Galway,

Ireland. His research interests are in distrib-

uted systems and applications, including

service-oriented computing, Semantic Web

services, and enterprise computing. Vitvar

has a PhD in computer science from the

Czech Technical University. He is a member

of the IEEE and of working groups in the

W3C and the Organization for the Advance-

ment of Structured Information Standards.

Contact him at t.vitvar@ieee.org.

Carine Bournez is an engineer in the architec-

ture domain at W3C. Her research interests

include Web services and agents, associat-

ed semantics, and XML technologies.

Bournez has an engineer degree and PhD in

computer science from INSA Lyon, France.

Her involvement in W3C Web services

activity started with SOAP 1.2 and contin-

ued with Semantic Web services work,

including SAWSDL. Contact her at carine@

w3.org.

Joel Farrell is a senior technical staff member at

IBM. His research interests include Web

services, process automation through

semantic reasoning, and situational appli-

cations. Farrell has an MS in computer sci-

ence from Syracuse University. He is the

chair of the Technical Steering Committee

of the MedBiquitous Consortium. Contact

him at joelf@us.ibm.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

