
Semantic Web Service Offer Discovery

Jacek Kopecký

Digital Enterprise Research Institute (DERI)
Innsbruck, Austria

jacek.kopecky@deri.at

Abstract. Semantic Web Services are a research effort to automate the usage of
Web services, a necessary component for the Semantic Web. For a number of
reasons, static detailed and complete semantic service description is not feasible,
the client software cannot select the best service offer for a given user goal only by
using the static service descriptions. Therefore the client interacts automatically
with the discovered Web services to discover the offers, in other words to find
the information necessary to select the best offer that will fulfill the user’s goal.
Semantic Web Service offer discovery is the focus of our work.

1 Introduction

The Semantic Web is not only an extension of the current Web with more semantic
descriptions of data; it also needs to integrate services that can be used automatically
by the computer on behalf of its user. A major technology for publishing services on
the Web is the so-called Web services. Based on WWW standards HTTP and XML,
Web services are gaining significant adoption in areas of application integration, wide-
scale distributed computing, and business-to-business cooperation. Still, many tasks
commonly performed in service-oriented systems remain manual (performed by a hu-
man operator).

In order to make Web services part of the Semantic Web, the research area of Se-
mantic Web Services (SWS) aims to increase the level of automation of some of these
tasks, e.g. discovering the available services and composing them to provide more com-
plex functionalities. SWS automation is supported by machine-processible semantic
Web service descriptions. Current state of the art in non-semantic service description
is WSDL1, which can describe the messages accepted and produced by a Web service,
and the simple message exchanges (called operations) and all the necessary networking
details. In effect, WSDL specifies a limited syntactical contract that the service adheres
to. We call it syntactical because it only constrains the lexical form of the messages. The
meaning of the operations and messages is usually expressed in textual documentation
or sometimes only implied in the names of the message elements. Semantic descriptions
capture the important aspects of this meaning, generally in a formal language based on
logics.

SWS descriptions are processed by a semantic execution environment (SEE, for in-
stance WSMX [4]). A user can submit a concrete goal to the SEE, which then finds and

1 Web Service Description Language, http://w3.org/TR/wsdl20

R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM 2007 Ws, Part I, LNCS 4805, pp. 314–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://w3.org/TR/wsdl20

Semantic Web Service Offer Discovery 315

uses the appropriate Web services to accomplish the goal. SWS research focuses mainly
on how the SEE “finds the appropriate Web service(s)”, so to speak, as illustrated in
Figure 1 with the first three SEE tasks. More concretely, SWS research focuses chiefly
on the description languages and the discovery mechanisms that use SWS descriptions
to match them against user goals.

In the figure, meant to be illustrative of the situation, rather than a real-world sce-
nario, the user decides to lead a healthier life and wants to buy 2kg of fruit. The SEE
will first discover any services that sell fruit (discarding the service that sells potatoes),
then it will filter depending on the user’s constraints and requirements (the user doesn’t
like peeling oranges), ranks the resulting services according to the user’s preferences
(the user is a student and so prefers the cheaper options) and selects the one service that
is invoked in the end. At any stage in the process, the user can be allowed to confirm
the results.

Discovery Filtering
buy fruit don’t want oranges

Ranking, selection
prefer the cheapest

Invocation
buy 2kg of apples

oranges
apples, peaches,

peaches
apples,

apples
User goal
"buy 2kg of fruit"

2kg apples, pleaselis
t s

er
vic

es

Registry

descriptions
published

ap
pl

espe
ac

he
s

or
an

ge
s

po
ta

to
es

Web Services − concrete offers

Fig. 1. Semantic Web Services automation tasks

We’ve chosen the simple fruit-shops example here to illustrate the situation in easily
accessible terms, however, the general situation applies to any kinds of service: the ex-
isting services will publish their descriptions in a registry; then the SEE will discover
the applicable services, filter and rank them according to any constraints and prefer-
ences, and invoke the selected service to achieve the user’s goal.

The steps described above rely solely on the published Web service descriptions
to find the best service that matches the user’s goal. Alas, outside limited scenarios,
it is not feasible to put all the relevant information in the service description, due to
reasons detailed later in this paper. For instance, a grocery shop service would not list
all the kinds of fruit they currently sell along with their up-to-date prices; instead, such
a service would be described as “selling groceries”. This limits the scope of discovery
based on static descriptions and introduces the need for an additional step, where the
SEE will contact the discovered Web services (or their providers) to find out more about
the service’s concrete offerings.

This additional step is called offer discovery (as opposed to service discovery). The
objective of this step is to establish whether the service can fulfill the user’s concrete
goal and under what conditions. In our fruit shopping example, the SEE checks whether
a grocery shop service carries any fruits, what sorts of fruits are available and at what
prices, as shown in Figure 2. SWS offer discovery is the focus of our work.

316 J. Kopecký

lis
t s

er
vic

es

Registry

Filtering
don’t want oranges

Ranking, selection
prefer the cheapest

Invocation
buy 2kg of apples

G: apples $0.75S: peaches $0.99
G: apples $0.75

2kg apples, please

what fruits do you have?

Web Services

ha
rd

w
ar

e

su
pe

rm
kt

gr
oc

er
ie

s

buy fruit
Offer discovery

Supermarket (S)
Groceries (G)

S: peaches $0.99
S: oranges $0.69
G: apples $0.75

Service discovery

User goal
"buy 2kg of fruit"

buy fruit

published
descriptions

Fig. 2. Semantic Web Service offer discovery in SEE tasks

This paper is structured as follows: in Section 2 we define SWS offer discovery, re-
late it to other SEE tasks and provide detailed motivation for why this step is necessary.
Section 3 presents related work, both within Web services and in earlier research ar-
eas. In Section 4, we sketch the envisioned solution. Section 5 describes our expected
research and evaluation methodology, and Section 6 contains concluding remarks.

2 Semantic Web Service Offer Discovery

The best way to define offer discovery is by describing the problems that it aims to solve.
First, let us review the distinguishable functions of a semantic execution environment
(SEE, cf. [7]). The following steps are traditionally executed after a user submits their
goal “buy 2kg of fruit”, as shown in Figure 1.

1. Discovery2 — using published descriptions, find all the available Web services that
may sell fruits (the services may be more generic, like a supermarket with all kinds
of products, or more specific, like an owner of a cherry-tree orchard, who naturally
only offers cherries).

2. Filtering — filter out services that do not fit the user’s constraints (for instance a
service that sells oranges, because the user does not like them).

3. Ranking, selection — rank the remaining offers based on the user’s preferences,
for instance by price. The best-ranked service may be automatically selected, or the
ranking may be presented to the user.

4. Invocation — use the selected service to achieve the goal (in our case, purchase
the fruit).

On top of these steps, SWS literature often mentions mediation and composition.
Mediation occurs everywhere where the SEE encounters heterogeneities, for instance
different units of scalar values. Composition puts together multiple services if a single
one cannot accomplish the user’s goal. Neither of these tasks is particularly relevant to
offer discovery, even though they may interact.

2 Sometimes, the term discovery is used to mean all the steps leading from a user’s goal to a
service that can fulfill it, i.e. everything but invocation. We choose a narrower definition of
discovery which only does matchmaking on the available service descriptons.

Semantic Web Service Offer Discovery 317

The task sequence above is fully adequate when the service descriptions carry all the
data relevant for the goal of the user. In a grid environment, a user might need processing
services and storage services, and the descriptions will contain such classifications. In
our fruit-buying scenario, the services need to advertise in their descriptions that they
sell fruit (and what kinds of fruit) and at what price (for ranking).

In restricted environments and in simple cases, it is not a problem to publish all the
relevant information about a Web service in its semantic description. However, com-
plete “semantic-heavy” description becomes unwieldy for real-world services on the
open Web:

– for a larger online store, the full product catalogue would make a Web service de-
scription impossible or impractical to process, considering current reasoning per-
formance;

– similarly to the above case, updating a catalogue in a service registry upon every
inventory or pricing change would lead to heavy bandwidth use in the registries;

– a full description of service offers could even reveal trade secrets, for instance
a bank service description would have to detail all loan approval procedures.

While reasoning performance may improve, and registry updates can be optimized,
trade secrets will not go away. For banks, the loan approval process with all its consid-
erations is part of what makes some banks successful and others bankrupt.

In our experience, the complexity of semantic-heavy service descriptions is certainly
a practical barrier to SWS adoption within the Web services industry. The completeness
requirement of the semantic-heavy approach, including possibly sensitive details about
all the offers, is at least a perceived barrier as well. In other words, service discovery
based solely on complete static semantic descriptions is of limited usefulness. On the
other hand, less detailed “semantic-light” descriptions (for instance, Amazon would be
described as selling books, movie DVDs, music CDs and DVDs etc.) limit the SWS
automation to simple matchmaking and ranking.

Therefore, we split the task of finding the most appropriate offer from all the avail-
able Web services into static service discovery followed by dynamic offer discovery.
The static service discovery uses coarse-grained semantic service descriptions to find
services that potentially match the user’s goal, and the dynamic offer discovery uses the
semantic description of the service interface to automatically find appropriate offers.
Offer discovery can be seen as information retrieval or as negotiation, as discussed in
Section 3. With offer discovery, the set of steps can be rephrased as follows:

1. Service discovery — find all the available Web services that may be able to fulfill
the user’s goal (i.e. discard those which, based on their description, cannot fulfill
the user’s goal).

2. Offer discovery — by interaction with the discovered services, find all their offers
relevant for the goal.

3. Filtering — filter out offers that do not fit the user’s constraints.
4. Ranking, selection — rank the remaining offers based on the user’s preferences,

and select one to be invoked.
5. Invocation — use the selected service.

318 J. Kopecký

Semantic offer discovery aims to be able to communicate with any Web service and
find information about offers relevant to the user’s goal. For communicating with the
Web services, the offer discovery engine needs a description of the service interface
(what operations it contains that can be used to gather offer information) and a descrip-
tion of the exchanged data, to understand the offers and be able to compare it with the
goal. In other words, offer discovery needs different semantic description than that for
service discovery; service discovery needs to know what the service offers, whereas
offer discovery needs to know how to talk to the service to get the information.

Our main hypothesis is that the semantic description necessary for automated offer
discovery is significantly easier to create and manage (and more acceptable) than the
complete semantic description of all the offers. A further hypothesis is that the process
of offer discovery is more efficient or on par with the processes of managing the com-
plete descripton and reasoning with it in service discovery. Assuming these hypotheses
hold, offer discovery would complement service discovery in a two-stage process that is
more efficient than service discovery with complete semantic descriptions. In Section 5,
we show how we expect to evaluate these hypotheses.

3 Related Work

Semantic Web service offer discovery, as defined in the preceding section, is related to
earlier research in automated negotiation, and query processing/information gathering.

The term negotiation has been used for different purposes in a variety of computer
science fields, e.g. electronic commerce, grid computing, distributed artificial intelli-
gence and multi-agent systems. In electronic commerce, Beam and Segev [2] define
negotiation as “the process by which two or more parties multilaterally bargain re-
sources for mutual intended gain”. There are several different types of negotiations in
e-commerce: auctions (multiple buyers bid for price), double auctions (both buyers and
sellers bid for price, e.g. stock exchanges), one-to-one bargaining, and even catalogue
provision (price fixed by seller). Offer discovery is similar to catalogue provision (offer
discovery accesses the relevant parts of the offer catalogue), but it could be extended in
the direction of bargaining as well.

Research in query answering and information retrieval has dealt, among others, with
using multiple information sources to gather the requested (or relevant) information
(cf. [5]), based on a user query. In Semantic Web services, a user goal can be seen
as a form of query, and the discovered services (or their individual operations) as in-
formation sources. The particular problem in SWS offer discovery is the description
of the services and their operations so that information retrieval techniques would be
applicable.

Apart from related work described above, we know of only one published attempt
that involves dynamic offer discovery in Semantic Web Services: Zaremba et al. [8,9]
talk about a so-called “contracting interface” with a described choreography. In their
case, the SEE client follows the predefined choreography to find out the concrete price
offered by a discovered Web service. The contracting interface can be likened to a
prescribed negotation protocol.

Semantic Web Service Offer Discovery 319

Offer discovery is not a problem specific to SWS. However, earlier efforts on similar
automation (e.g. in multi-agent systems) have generally presumed a controlled envi-
ronment with a predefined set of interaction protocols for various tasks; for instance, a
marketplace would dictate a bargaining and auctioning protocol, and a distributed query
answering system would presume a single common query language and protocol. Such
approaches are applicable to Web services, however, such bargaining/auctioning proto-
cols or common query languages would need to be standardized and adopted both by
most service providers. Our SWS offer discovery mechanism, together with any nec-
essary semantic annotations mechanisms, is a novel approach because it aims to be
generic, independent of the domain of the service offers; potentially, it could serve as
one input to the mentioned standardization process.

4 Envisioned Solution

Our work on Semantic Web Service offer discovery is in a very early stage. In this
section, we show the components necessary for SWS offer discovery, and their envi-
sioned implementations. SWS offer discovery needs the following components:

1. semantic annotations of Web services, their operations and messages;
2. evaluation of what operations can be invoked with the available data, and what

operations are likely to return relevant offer data;
3. invocation of the selected operations with the appropriate goal data, translated into

the appropriate XML messages.

The first component deals with the semantic description of the Web service opera-
tions and their inputs and outputs, also known as SWS grounding (cf. [6]). As part of
activities related to SWS grounding, the author has been involved with W3C standard-
ization of the WSDL 2.0 Recommendation3, and chaired the W3C Working Group that
created the Semantic Annotations for WSDL and XML Schema (SAWSDL) specifica-
tion4 While these efforts have little research value, the familiarity with the Web and
Web Services specifications should help make the semantic annotation mechanisms
more practical.

One major piece of useful existing annotation is WSDL 2.0 operation safety5. Safety
annotation allows a client to distinguish operations that are safe to be used automati-
cally and opportunistically. For instance on the Web, every information retrieval (HTTP
GET) is safe. Operation safety, being part of the WSDL 2.0 standard, is a semantic an-
notation that should be quite acceptable to the industry.

The second component, therefore, can select all safe operations and operations oth-
erwise annotated as useful for information retrieval, if necessary. For instance, such op-
erations could allow browsing the catalogue of an online store or finding out the price
and further details for a given product. When we have selected the suitable operations,
we can use information gathering and planning techniques to choose the operations that

3 http://w3.org/TR/wsdl20
4 http://w3.org/TR/sawsdl , soon to become a W3C Recommendation.
5 See the definition of safe interactions in [1].

320 J. Kopecký

can return relevant information about the offers pertinent to the user’s goal. We do not
have a firm definition of relevant at the moment.

The third component actually invokes the chosen operations. Its role is to ground the
goal data (presumably in a Semantic Web language, e.g. RDF) to the XML messages
expected by the operations, and interpret the returned XML messages as semantic data
about offers.

5 Research and Evaluation Methodology

The planned research can be split into the following sequence of high-level steps:

– Investigate information retrieval and distributed query answering methods, espe-
cially with respect to how a SWS goal can be transformed into an information
retrieval query;

– find out what semantic descriptions are necessary to enable applying the above
method(s) to SWS, especially whether Web operation safety is applicable;

– implement a prototype offer discovery engine, evaluate against static semantic-
heavy service discovery and potential other competing approaches.

The expected contribution of our work is an efficient approach to automatic offer
discovery that complements service discovery based on static descriptions. The effi-
ciency of the approach is evaluated in two dimensions: volume and complexity of the
necessary semantic description, and the performance and scalability of the discovery
process, as described below. The offer discovery engine will form a part of a semantic
execution environment (SEE). The use cases for a SEE include the common scenarios
of electronic shopping and travel scheduling6, but also existing real-world applications
such as e-Government Emergency Planning, as described in [3].

The major benefit of the presence of offer discovery in a SEE is that the semantic
descriptions of Web services need not be complete and detailed (e.g. the whole cata-
logue of an online store). This guides the first evaluation criterion: the semantic de-
scription necessary to enable automated offer discovery must be significantly simpler
than a complete and detailed static semantic description of the service. We will do con-
crete comparisons of reasoning performance, and user tests on the relative complexity
of creating and managing the full static description vs. the descriptions necessary for
automatic offer discovery.

Apart from the complexity of the semantic descriptions, offer discovery requires in-
teraction with the Web services, whereas static service discovery based on complete
semantic-heavy descriptions requires that the service provider updates the description
on every change. Therefore, the second evaluation criterion is: the reasoning and net-
worked interaction during offer discovery should have better performance and scal-
ability than the reasoning and network interactions for service description updates.
Performance can be compared on specific test cases, and scalability needs to evaluate
how the approaches can deal with many services and many service offers. Further, the

6 See http://sws-challenge.org/

Semantic Web Service Offer Discovery 321

comparison combines reasoning tasks with network interactions; therefore we need to
evaluate different settings of reasoning power vs. networking setup.

Finally, we will also compare our approach against the “contracting interface” ap-
proach from [9]. We can formulate our third evaluation criterion: the semantic descrip-
tion necessary to enable automated offer discovery should be simpler and more flexible
than the semantic description of the contracting interface(s). Again we talk about sim-
plicity of description, which we can test with users, but we are adding “flexibility”
here, because at this time we suspect that a prescribed contracting choreography may
be limiting, as it expects a particular level of detail of information described in the user
goal. For instance, if a user goal is to buy 2kg of fruit, a choreography for checking
the price of concrete products may fail because the user hasn’t specified a concrete
fruit. Therefore in terms of flexibility, we can compare the correctness and complete-
ness (a.k.a. precision and recall) of offer discovery with a “contracting interface” and
our approach that makes use of any available information gathering operations.

6 Conclusions and Future Work

The Semantic Web is an effort towards further automation in the World Wide Web. In
addition to semantic descriptions of the available data, the Semantic Web needs to in-
corporate services. In order for the computer to use the services automatically on behalf
of its user, the software needs to be able to discover and invoke the available services.
Semantic Web Services are an effort to provide the necessary semantic descriptions of
Web services so that such automation can be achieved.

Since Web service discovery cannot always be based on complete and detailed se-
mantic description, it needs to be complemented with automatic offer discovery. We
intend to research an approach to SWS offer discovery that will significantly simplify
the needed semantic descriptions and thus help ease the adoption of SWS technologies
in the industry.

References

1. Architecture of the World Wide Web. Recommendation, W3C (December 2004), Available
at, http://www.w3.org/TR/webarch/

2. Beam, C., Segev, A.: Automated negotiations: A survey of the state of the art. Wirtschaftsin-
formatik 39(3), 263–268 (1997)

3. Davies, R.: Summative report on potential applications of SWS in eGovernment, Deliverable
D9.16, project DIP (FP6 - 507483) (2006), available at
http://dip.semanticweb.org/documents/
D916SummativeRpt potentialAppssSWS EGov final.pdf

4. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX – A Semantic Service-
Oriented Architecture. International Conference on Web Services (ICWS 2005) (July 2005)

5. Knoblock, C.A.: Planning, executing, sensing, and replanning for information gathering. In:
Proc. of the 14th Int’l Joint Conference on Artificial Intelligence, pp. 1686–1693 (1995)

6. Kopecký, J., Roman, D., Moran, M., Fensel, D.: Semantic Web Services Grounding. In:
Proc. of the Int’l Conference on Internet and Web Applications and Services (ICIW 2006)
(February 2006)

http://www.w3.org/TR/webarch/
http://dip.semanticweb.org/documents/D916SummativeRpt_potentialAppssSWS_EGov_final.pdf
http://dip.semanticweb.org/documents/D916SummativeRpt_potentialAppssSWS_EGov_final.pdf

322 J. Kopecký

7. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian, E.,
Haselwanter, T., Fensel, D.: Semantically-enabled service oriented architecture: concepts,
technology and application. Service Oriented Computing and Applications 2(2) (2007)

8. Vitvar, T., Zaremba, M., Moran, M.: Dynamic service discovery through meta-interactions
with service providers. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC. LNCS, vol. 4519,
pp. 84–98. Springer, Heidelberg (2007)

9. Zaremba, M., Vitvar, T., Moran, M., Hasselwanter, T.: WSMX Discovery for SWS Chal-
lenge. SWS Challenge Workshop, Athens, Georgia, USA (November 2006)

	Introduction
	Semantic Web Service Offer Discovery
	Related Work
	Envisioned Solution
	Research and Evaluation Methodology
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

