
WSDL RDF Mapping:
Developing Ontologies From

Standardized XML Languages

Jacek Kopecký

DERI Innsbruck
Technikerstrasse 21a

6020 Innsbruck, Austria
jacek.kopecky@deri.org

Abstract. The W3C is working on a Recommendation for Web Services
Description Language, WSDL 2.0, based on XML. The Working Group
is chartered to produce a normative mapping of WSDL into RDF, effec-
tively a WSDL ontology. While this work is still ongoing, in this paper
we propose guidelines for creating such ontologies coming from XML
standards.

1 Introduction

In the World Wide Web Consortium (W3C), the Web Service Description Work-
ing Group1 has been working on version 2.0 of the popular Web service descrip-
tion language WSDL [8]. This XML language allows Web service providers to
describe the functional interface of the service, that is, the types and sequences
of input and output messages.

In order to add WSDL data to the Semantic Web, the working group was
chartered to produce an RDF mapping for the XML-based WSDL documents.
This mapping specification has two main parts: a WSDL ontology and a for-
mal mapping from WSDL documents to RDF data that uses that ontology. The
author of this paper is the main editor of the WSDL RDF mapping specifica-
tion [2].

While working on this specification, we have learned several lessons. For ex-
ample, our initial draft of the WSDL ontology closely followed the formalization
of WSDL, the so-called component model, and was largely rejected by Semantic
Web practicioners2 for its complexity and opacity. The current version tries to
convey the intention of WSDL in what should be a much better RDF form.

In this paper, we describe the WSDL RDF mapping effort and propose a
number of guidelines for creating ontologies for standard XML-based vocabular-
ies. In our experience, XML-based standards share an interesting characteristic:

1 http://www.w3.org/2002/ws/desc/
2 The initial draft was presented to the Semantic Web Interest Group of W3C at its

meeting in Boston, March 2005.



while the XML language itself is usually fairly user-friendly, it is often backed
by a strong and detailed formalization. The intricacies of the language are only
grasped by experts, yet many non-experts will use the language interoperably
only thanks to an intuitive understanding of the syntax.

We can demonstrate this characteristic on XML Schema [1]. In limited forms
it is used and even implemented in most systems working with XML data, yet
complete and correct support is lacking, and cooperating systems often have con-
flicting limitations. The W3C has started a working group to document XML
Schema Patterns for Databinding3 in an attempt to specify an interoperable
subset of XML Schema that would be supported reliably in heterogeneous sys-
tems.

We argue that when mapping an XML language to RDF, attempting to
capture all the details of the formalization is counterproductive. Ontology engi-
neering methodologies (cf. [5]) use the notion of minimal ontological commitment
to limit the level of constraints that are expressed in an ontology, and we argue
that ontologies based on XML languages need to aim for even lower explicit
ontological commitment.

In the following sections, we first give an overview of WSDL in Section 2, and
we describe the draft WSDL ontology in Section 3. In Section 4 we propose our
guidelines for working on standards-based ontologies, followed by showing how
the proposed guidelines apply to our draft WSDL ontology in Section 5. Finally
we discuss related work in Section 6 and we conclude the paper in Section 7.

2 WSDL overview

WSDL 2.0 is a language for describing Web services. In particular, it can describe
the structure of the messages the service accepts and produces, simple message
exchanges (called operations) and all necessary networking details. On top of
this, extensions in WSDL documents can specify that additional features are
supported or even required by the service. In effect, WSDL specifies a limited
contract that the service adheres to.

The WSDL specification is written in terms of a component model, present-
ing any WSDL document as a set of components with local properties. In the
core, WSDL contains a fairly simple set of components: the top-level Descrip-
tion component represents a WSDL document together with all imported and
included documents. Every Description may contain Interface, Binding and Ser-
vice components4.

An Interface component describes the abstract interface of a Web service—
the operations, messages and faults. An operation is represented with an Inter-
face Operation component, which has a property {message exchange pattern}
3 http://www.w3.org/2002/ws/databinding/
4 Formally, the Description component contains properties {interfaces}, {bindings}

and {services}, each of which is a set of the respective Interface, Binding and Service
components. We use the notation {property name} to indicate component properties,
as the WSDL specification does the same.



to point to the message exchange pattern (MEP) that this operation follows.
An MEP in WSDL prescribes the number and directionality of messages, and
the operation populates them with concrete XML elements in its Interface Mes-
sage Reference components. Each Interface Message Reference represents a sin-
gle message, refers to the appropriate MEP message and contains an {element
declaration} property which points to a schema. Most MEPs also allow fault
messages for expected application-level errors. Faults are modeled on the same
level as operations, that is, an interface defines a number of faults (Interface
Fault components), which are then used within operations (with Interface Fault
Reference components).

An interface is specified on the level of XML messages; the networking details
about how the messages are represented on the wire are specified in the next
top-level WSDL component—the Binding. The Binding component follows the
structure of Interface and uses extensions to specify any protocols and network-
ing parameters.

The last top-level WSDL component — Service — provides a number of
endpoints where a service is available. And endpoint specifies an actual address,
together with a Binding that indicates how the client should communicate with
that address.

Figure 1 shows a WSDL document (adopted from the WSDL Primer [4])
that describes a simple hotel service. This interface provides a single operation
for checking the availability of rooms for a given date. Abstractly (i.e., on the
Interface level), the operation accepts the dates of check-in and check-out and
the required type of room, and it returns the daily rate of available rooms, or zero
if nothing is available. In case the room type or input dates are erroneous, a fault
can be generated. The Binding level specifies that the data will be transmitted
with SOAP over HTTP, plus several other details. Finally the Service level gives
one endpoint address, at which the hotel service is available.

WSDL is, by design, a very extensible language, and in fact some parts of
the standard are built as predefined extensions (see [3]). There are three distinct
kinds of extensibility in WSDL: extension points, Features and Properties, and
generic XML-based extensions.

Extension points are those places in WSDL descriptions where a number of
options is defined by WSDL, but the list is open; for example, every WSDL
operation follows some message exchange pattern, and while WSDL provides a
list of eight predefined patterns, WSDL users are free to define new ones, if nec-
essary. Extension points have specific and non-overlapping scopes, for example
the mentioned MEPs guide the ordering of messages, operation styles generally
restrict message schemas, and binding types specify the networking details with
different underlying protocols.

Features and Properties form a specific extensibility mechanism in WSDL. A
Feature is an abstract piece of functionality (e.g. making communication confi-
dential) and a Property is a concrete parameter of that functionality (e.g. the
required strength of confidentiality). Every component in WSDL may offer or
require the use of specific Features. For example, many services may be able to



<description targetNamespace="http://hotel.example.com/wsdl" ...>

<types>

<xs:schema ...>

<xs:element name="checkAvailability"

type="tCheckAvailability"/>

<xs:complexType name="tCheckAvailability">

<xs:sequence>

<xs:element name="checkInDate" type="xs:date"/>

<xs:element name="checkOutDate" type="xs:date"/>

<xs:element name="roomType" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="checkAvailabilityResponse"

type="xs:double"/>

<xs:element name="invalidDataError"

type="xs:string"/>

</xs:schema>

</types>

<interface name="hotelIface">

<fault name="invalidDataFault"

element="ghns:invalidDataError"/>

<operation name="checkAvailability"

pattern="http://www.w3.org/2006/01/wsdl/in-out">

<input element="ghns:checkAvailability"/>

<output element="ghns:checkAvailabilityResponse"/>

<outfault ref="tns:invalidDataFault"/>

</operation>

</interface>

<binding name="hotelSOAPBinding"

interface="tns:hotelIface"

type="http://www.w3.org/2006/01/wsdl/soap"

s:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP">

<fault ref="tns:invalidDataFault"

s:code="soap:Sender"/>

<operation ref="tns:checkAvailability"

s:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

</binding>

<service name="hotelService"

interface="tns:hotelIface">

<endpoint name="hotelEndpoint"

binding="tns:hotelSOAPBinding"

address="http://hotel.example.com/service"/>

</service>

</description>

Fig. 1. Example hotel service description



use message encryption if the client wishes it (these services will offer commu-
nication confidentiality feature), but some will require the client to encrypt all
messages to the service. Similarly, every component may restrict the possible
values of a Property, either to a single value or to a restricted set of values. In
a continuation of the confidentiality example, a service may list the supported
encryption algorithms, by constraining the appropriate Property.

Apart from the scoped extension points and the abstract Features and Prop-
erties, WSDL is open to XML-based extensibility, i.e. any WSDL element can
contain any number of attributes or elements from a foreign (non-WSDL) name-
space. Such extensions are not constrained in what they may mean. In general,
extensions add properties to the existing WSDL components, so that the proces-
sor can use the extended information. As we cannot expect all WSDL processors
to know all the extensions they might encounter, extension elements in WSDL
are by default optional, but they may be marked mandatory. Optional extensions
can be ignored by a processor that does not recognize them, whereas mandatory
extensions must be understood by a processor that needs to process the parent
WSDL element. More significantly, mandatory extensions are even allowed to
change the meaning of the parent WSDL element.

WSDL is specified as an extensible component model as opposed to an XML
grammar in order to abstract away, among others, many ambiguity issues of
XML serialization and document includes and imports. Apart from the actual
specification prose, the component model of WSDL is additionally defined us-
ing the Z notation [7], which allows consistency and coverage verification. In
particular, the Z notation was used to help ensure that the test suite covers all
important WSDL component model constraints, and it can be used for validation
of WSDL documents.

The Z notation is also useful to us when we work on the WSDL ontology;
it serves as a concise listing of all the components, their properties and all the
component model constraints from WSDL.

3 WSDL ontology

This section describes the WSDL ontology defined in the WSDL RDF mapping
specification [2], highlighting the main differences between the component model
and the ontology structure. The ontology is defined in OWL [6], but due to
the layering of the Semantic Web languages, we expect that WSDL documents
mapped into this ontology will be useful even to generic RDF processors that
do not support OWL inference.

The core components of WSDL are mapped to corresponding classes with
matching names, that is, the ontology defines classes Description, Interface,
Binding and Service etc. Instances of these classes are connected using prop-
erties whose names are the same as those of their range classes, only beginning
with lower case, so for instance the property interface links a concrete instance
of Description with the concrete instance of Interface that it contains.



@prefix rwsdl: <http://www.w3.org/2005/10/wsdl-rdf#> .
@prefix rsoap: <http://www.w3.org/2005/08/wsdl/soap#> .

<http://hotel.example.com/wsdl#wsdl.description()>
a rwsdl:Description ;
rwsdl:interface <http://hotel.example.com/wsdl#wsdl.interface(hotelIface)> ;
rwsdl:binding <http://hotel.example.com/wsdl#wsdl.binding(hotelSOAPBinding)> ;
rwsdl:service <http://hotel.example.com/wsdl#wsdl.service(hotelService)> .

<http://hotel.example.com/wsdl#wsdl.interface(hotelIface)>
a rwsdl:Interface ;
rwsdl:interfaceFault

<http://hotel.example.com/wsdl#wsdl.interfaceFault(hotelIface/invalidDataFault)> ;
rwsdl:interfaceOperation

<http://hotel.example.com/wsdl#wsdl.interfaceOperation(hotelIface/checkAvailability)> .
<http://hotel.example.com/wsdl#wsdl.interfaceFault(hotelIface/invalidDataFault)>

a rwsdl:InterfaceFault .
<http://hotel.example.com/wsdl#wsdl.interfaceOperation(hotelIface/checkAvailability)>

a rwsdl:InterfaceOperation ;
rwsdl:messageExchangePattern <http://www.w3.org/2006/01/wsdl/in-out> ;
rwsdl:interfaceMessageReference

<http://hotel.example.com/wsdl#wsdl.interfaceMessageReference
(hotelIface/checkAvailability/In)> .

<http://hotel.example.com/wsdl#wsdl.binding(hotelSOAPBinding)>
a rwsdl:Binding ;
a <http://www.w3.org/2006/01/wsdl/soap>;
rwsdl:interface <http://hotel.example.com/wsdl#wsdl.interface(hotelIface)> ;
rsoap:protocol <http://www.w3.org/2003/05/soap/bindings/HTTP> .

<http://hotel.example.com/wsdl#wsdl.service(hotelService)>
a rwsdl:Service ;
rwsdl:interface <http://hotel.example.com/wsdl#wsdl.interface(hotelIface)> ;
rwsdl:endpoint <http://hotel.example.com/wsdl#wsdl.endpoint(hotelService/hotelEndpoint)> .

<http://hotel.example.com/wsdl#wsdl.endpoint(hotelService/hotelEndpoint)>
a rwsdl:Endpoint ;
rwsdl:binding <http://hotel.example.com/wsdl#wsdl.binding(hotelSOAPBinding)>;
rwsdl:address <http://hotel.example.com/service> .

Fig. 2. An excerpt of the RDF form of the example WSDL from Figure 1

In the component model of WSDL, components are usually identified by their
type, their name, potentially the names of the components in the owner hier-
archy, and with the namespace of the defining WSDL file. The example WSDL
document in Figure 1 contains the Interface component named hotelIface in
the namespace http://hotel. example.com/wsdl. For identifying the compo-
nents with URIs, as is required by RDF, the WSDL specification provides a set of
URI references formed from the namespace, component type and all the relevant
names. The example interface is identified as http://hotel.example.com/wsdl
#wsdl.interface(hotelIface). For more information on WSDL component
URIs see appendices A.2 and C in [8]. It is important to note here that the
ontology only uses these composite component identifiers—the names and na-
mespaces are not modeled separately, but they can be reconstructed from the
URI references, if necessary.

Figure 2 shows the N3 form of an excerpt of the RDF form of the core
components from Figure 1. A graphical representation of the same triples is in



Fig. 3. Graph of the RDF triples from Figure 2

Figure 3. For conciseness and readability we only show a limited part of the RDF
data.

Because major pieces of WSDL are specified as standard extensions, the RDF
mapping also defines how these predefined extensions are represented in RDF.
For example, the RDF ontology contains a class of operation styles along with
the property operationStyle for pointing to particular instances of the class,
like the three styles defined by the standard: RPC, IRI and Multipart.

Both standard WSDL bindings (SOAP and HTTP) are also extensions that
define additional properties for WSDL components, and these properties are
translated into RDF in a straightforward manner.5 The two RDF figures show
how the extensibility attribute s:protocol (specifying the underlying proto-
col that carries the SOAP messages) is mapped into a simple RDF property
protocol.

Feature components, which serve in WSDL to point to actual features, are
skipped in the RDF form; instead the required features are indicated using the
property requiresFeature and optional ones are indicated using the property
offersFeature, pointing directly to the feature URI. Here the RDF mapping
differs from the component model, as in the component model a Feature com-
ponent can contain documentation or extensions which apply to the particular
instance of use of the feature, not to the feature itself—with our mapping the
documentation or extensions are lost. Property components, however, are mod-
eled as instances of the class PropertyValue, because in the component model,
each Property component actually specifies a constraint on the values of the
property in the scope of a particular service, binding or interface.

5 Unfortunately the word property is overloaded here: the component-model properties
from WSDL are represented as RDF properties; and soon the Property components
come into play as well.



<wsdl:binding name="hotelSOAPBinding" ...>

<ns:ext xmlns:ns=’http://example.com/’/>

...

</wsdl:binding>

@prefix rwsdl: <http://www.w3.org/2005/10/wsdl-rdf#> .

<http://hotel.example.com/wsdl#wsdl.binding(hotelSOAPBinding)>

a rwsdl:Binding ;

rwsdl:extensionElement

"<ns:ext xmlns:ns=’http://example.com/’/>" .

Fig. 4. An example WSDL binding with an unknown optional extension, its
RDF form in N3

As we already mentioned, WSDL allows arbitrary XML element and at-
tribute extensions. All such extensions should also define how they are repre-
sented in RDF, as the HTTP and SOAP bindings do, for example. As WSDL
explicitly allows unknown extensions, we can also expect that WSDL docu-
ments with unknown extensions may be mapped into RDF. For this case, the
mapping has a fallback mechanism for dealing with unknown extensions. Op-
tional unknown extensions are represented in RDF using an XML literal (for
extension elements) or an instance with a QName and a literal value (for exten-
sion attributes), and the parent components point to these extensions using the
properties extensionElement and extensionAttribute. An example with an
unknown extension element is shown in Figure 4. Mandatory extensions, how-
ever, may change the meaning of their parent components, therefore the RDF
mapping explicitly skips any components that contain mandatory unknown ex-
tensions, as the actual meaning of the component must be treated as unknown
as well.

To summarize, the RDF mapping is mostly straightforward, mapping compo-
nents to class instances and component properties to RDF properties, but there
are several deviations; notably in component identification, where the RDF uses
URIs that conflate the usual QNames of components. Another interesting differ-
ence between the component model and the ontology is that a few components
(Feature and HTTP Header components) are not present in the RDF form at
all, replaced with direct links that should improve the usability of the ontology.

We are currently working on an XSLT stylesheet that will transform WSDL
files into the appropriate RDF data. Our stylesheet cannot handle extensions
not defined in the WSDL 2.0 specifications, and it has only limited support
for imports and includes, therefore we do not plan to make this stylesheet a
normative reference implementation.



4 Guidelines for standards-based ontologies

Based on our experience with the RDF mapping of WSDL, we propose the
following two guidelines for creators of ontologies for standardized XML data
languages:

1. the ontology should follow the intent of the language, not necessarily any
particular formalization of it,

2. the ontology need not model all data constraints present in the underlying
standardized language,

The subsections below explain the guidelines in more detail.

4.1 Intent, not formalization

Because we assume that standardized XML languages will have some kind of un-
derlying formalization, it is tempting to translate such a formalization directly
into an ontology, given that ontological data is intended for automated computer
consumption. We suggest, however, that the ontology should eschew artifacts of
the formalization, like component sets and the strict distinction between com-
ponents and their properties in WSDL.

The rationale for this point lies in the differences in expressivity between the
underlying language formalization model and the ontology model. The formal-
ization model is often simple (like WSDL components with properties), whereas
ontology models (for example RDF/OWL) can natively capture relationships
like class membership and sub-class relations, and this power should be used.

For instance, we modeled properties like binding type or message direction
as class membership (rdf:type), i.e., binding extensions (HTTP, SOAP or any
new ones) are classes, and a given binding component (<wsdl:binding>) is
an instance of one of these classes. Further, some enumerated properties were
combined with container relationships, for example in the WSDL component
model, a component can contain a feature which is required or optional, and
in the ontology the component offers or requires the feature.

4.2 Not all constraints

Most languages, not only standardized ones, put many constraints on the data.
The constraints can be either explicitly spelled out or implied by the structure
of the language. In WSDL, for example, every Service component points to an
Interface (explicit constraint), and an Interface Operation can only be defined
as part of an Interface (implicit, structural constraint).

Not all of these constraints need to be modeled in the ontology. Language
constraints are formalized for validation, so that documents can be automatically
checked for correctness. But the mapping to ontological data is expected to
work with valid documents, so any RDF graph resulting from the mapping of



a valid WSDL file will, by definition, be valid, rendering constraints like OWL
cardinalities or even property ranges and domains redundant.

One could assume that all the language constraints should be present in the
ontology in order to avoid unintended interpretations of the data; this is part of
the principle of minimal ontological commitment. This principle is very useful if
the ontological data stands alone; however when creating an RDF mapping for
an XML-based language, the RDF data is effectively a read-only RDF view on
the original XML data. XML is proven to be an interoperable basis for machine-
processible languages, therefore if an application needs to check or access all the
intricacies of the language, it should use the XML form.

The RDF form is intended for combining with other ontological data in the
Semantic Web. Here, modeling all the available XML constraints could in fact
be harmful. For instance, in the WSDL component model, a single Description
component contains all the other components, however when we combine infor-
mation from multiple (unrelated) WSDL documents, we can find one interface
reused in multiple places. This is a real scenario that the WSDL specification
considers out of its scope (in order to simplify the language).

In other words, when the RDF data is going to be backed by the original XML
form, the ontology may beneficially drop some of the XML language constraints,
so that the RDF data can better play its role in the Semantic Web. While
ontologies are often viewed as complete domain models, we argue that ontologies
for XML standards need not be complete in this regard.

5 WSDL RDF mapping case study

Having formulated the guidelines in the previous section, we can now re-apply
them to the WSDL RDF mapping. Even though the guidelines stem from our
RDF mapping experience, it is useful to revisit them in an iterative process and
show where they have helped, and whether they might help even more.

As a good example of overformalization (Guideline 1), our initial draft mod-
eled a Description component with a single property interfaces which pointed
to a set containing Interface components (description hasInterfaces X; X con-
tains interface1 etc.), which is how the component model is specified. The current
draft takes advantage of the RDF set-of-triples model and simply uses multiple
interface properties on Description, removing the indirection through an ex-
plicit set, making the data easier to use.

The current version of the WSDL ontology still contains some cardinality
constraints. As discussed in Guideline 2, this may be redundant, making the
ontology more complex than is really necessary. We have already identified some
of them to be removed in the next version, as direct benefit of having the guide-
line written down in this paper, yet some of the cardinality constraints seem to
remain useful even in the RDF data. In particular, some properties have local
cardinality restricted to 1, indicating that the property will always be present,
simplifying the use of the ontology.



6 Related work

Even though ontologies have been created for pre-existing standards like Roset-
taNet and eCl@ss, we are not aware of any directly related work suggesting
a methodology for creating ontologies for reuse of formalized XML languages.
However, in the general scope of ontology engineering methodologies, there is
some overlap and even conflict with our first two suggestions.

The first guideline could be rephrased as “the existing formalization most
probably wasn’t intended for reuse and inference, so it may be improper as
the basis for an ontology.” While some could consider it unnecessary effort, we
suggest that redoing the conceptualization and formalization of the underlying
language, with focus on ontological modeling, will yield positive results.

The second guideline seems to be contrary to conventional ontological engi-
neering where more information in the ontology is beneficial, but we favor on-
tology simplicity (increasing the chances of reuse) to complete inference power
for the constraints, especially since we assume the constraints are enforced in
validation before a piece of data is transformed into the ontological form.

7 Conclusions

In this paper, we described our work on the RDF mapping of the Web Service
Description Language (WSDL), and we share the guidelines that we learned
from this work, for the benefit of others who map standardized languages into
an ontological form, which need not necessarily be limited to RDF/OWL.

Standardized languages share one specific property: they are commonly based
on some formalization intended to limit or eliminate ambiguities in interpreta-
tion. While very beneficial for ensuring interoperability, such formalizations are
not necessarily very convenient for working with actual data, therefore our first
guideline suggests that the ontology should focus on the intent of the language,
reusing the appropriate constructs available in the ontology language (e.g. multi-
ple class membership and subclassing) even if the underlying formalization does
not make use of such constructs.

The second guideling proposes that the ontology need not repeat all the data
constraints of the standardized language, because such constraints are in fact
enforced before a document is mapped into the ontological form, and may in
fact be harmful when combining data from multiple documents.

Even though our work on WSDL RDF mapping is not finished yet, we believe
our proposed guidelines can already be useful. If our guidelines are followed, it
should be easier to seed the Semantic Web with useful data coming from existing
standard languages.

8 Acknowledgements

This work is partially funded by the European Commission under the project
DIP.



References

1. XML Schema Part 1: Structures. Recommendation, W3C, October 2004. Available
at http://www.w3.org/TR/xmlschema-1/.

2. Web Services Description Language (WSDL) Version 2.0: RDF Mapping. Work-
ing Draft, W3C, November 2005. Available at http://www.w3.org/TR/2005/WD-
wsdl20-rdf-20051104/.

3. Web Services Description Language (WSDL) Version 2.0: Adjuncts. Candidate Rec-
ommendation, W3C, January 2006. Available at http://www.w3.org/TR/2006/CR-
wsdl20-adjuncts-20060106/.

4. Web Services Description Language (WSDL) Version 2.0: Primer. Candidate Rec-
ommendation, W3C, January 2006. Available at http://www.w3.org/TR/2006/CR-
wsdl20-primer-20060106/.

5. M. Fernandez-Lopez, A. Gomez-Perez, and N. Juristo. METHONTOLOGY: From
Ontological Art Towards Ontological Engineering. In Workshop on Ontological En-
gineering, Spring Symposium Series, AAAI97, Stanford, USA.

6. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. Recommendation 10 February 2004, W3C, 2004. Available at
http://www.w3.org/TR/owl-features/.

7. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
8. Web Services Description Language (WSDL) Version 2.0. Candidate Recommenda-

tion, W3C, January 2006. Available at http://www.w3.org/TR/2006/CR-wsdl20-
20060106/.


